

 Navigation

 	
 index

 	
 next |

 	OSU DevOps BootCamp 0.0.1 documentation

DevOps BootCamp

DevOps BootCamp (DOBC) is a free course hosted by the OSU Open Source Lab [http://osuosl.org].
The course is dedicated to teaching core software development and systems
operation skills to passionate OSU students and community members.

DOBC is always 100% free for in-person and online students.

Ready to Learn DevOps? Lesson 0: Start Here

DevOps Bootcamp’s curriculum is available for you to learn at your own pace.
Get started now!

Schedule

The DevOps BootCamp content is available for free but meet-space guided
lectures are offered throughout the year. Check the schedule below for our
in-person lectures; each lecture covers a different part of the curriculum
covering the entire course during the OSU academic school year.

Warning

If you are working ahead be aware that the schedule and slides may be
subject to change. Check back regularly.

Fall

	Lesson
	Date/Time
	Location
	Description

	DevOps Daycamp
	Oct 1, 10am-3pm
	OSU KEC 1001 [https://goo.gl/maps/KZiKaCoeuru]
	DevOps DayCamp (DOBC Kickoff)

	Fall Meeting 2
	Nov 5, 11am-3pm
	OSU KEC 1001 [https://goo.gl/maps/KZiKaCoeuru]
	Files, Verson Control, Programming

	Fall Meeting 3
	Dec 3, 11am-3pm
	OSU KEC 1001 [https://goo.gl/maps/KZiKaCoeuru]
	Frameworks, Testing and CI

Winter

	Lesson
	Date/Time
	Location
	Description

	
	
	
	

Spring

	Lesson
	Date/Time
	Location
	Description

	
	
	
	

Donate

We appreciate the help! To donate, go to http://osuosl.org/donate.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 0: Start Here

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/start-here.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/start-here.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

About the Program

[image: OSU OSL Promotional Photo]

DevOps

DevOps is a field which takes skills from Software Development and
Operations Engineering to create and run applications more
effectively.

TLDR: Development + Operations == Better Services

What DevOps BootCamp (DOBC) is

TLDR: Couch to DevOps in 1 school year

	DOBC is a free education program offering:

	
	Mentors teaching DevOps related tools and concepts.

	A challenge for anybody willing to put in the effort.

	One-on-one Apprenticeship.

	Hands-on training and lectures

	Free and Open Source course materials!

What DOBC is not

	DevOps BootCamp is not:

	
	A for-credit OSU class

	A Student job

	Easy

Why DOBC Exists

	DOBC was created because the OSU OSL:

	
	Merged with the school of EECS.

	Wanted to help students meet Company demands and expectations of
recent graduates.

	Needed to bridge the “Skills Gap” of the OSU EECS curriculum.

	Wanted to build a DevOps Learning community.

What You Will do

	You will Learn:

	
	Linux systems

	Networking

	Software development

	Tools and why they matter

	You will build:

	
	Functioning applications on the cloud

	Cloud infrastructures

Who Teaches DOBC

	The teachers of DOBC include:

	
	OSL Students

	OSL Faculty

	Guests from The Industry

	You!

The ‘Agreement’

	You get out what you put in.

	DOBC is not meant to be easy. Stick with it, persistence is rewarded.

	Student Benefits:

	A free education on industry topics, tools, and concepts

	Student Responsibilities:

	Show up if you can, keep up if you cannot, put forth effort, and don’t
forget to have fun.

	Give us feedback.

	
	There will be a survey you, should take it.

	Honesty is the best policy.

Getting Involved

	Where To Ask Questions

	
	Internet Relay Chat

	Mailing lists

	During Lecture and Hand-on Lessons

	More on the About page...

	How To Ask Questions

	
	Always be respectful to those helping you.

	Stay calm and articulate.

	Explain you are trying to achieve and be thorough.

The OSU Open Source Lab is Hiring

For more information check the OSL Hiring Page [http://osuosl.org/about/employment] regularly.

[image: OSU OSL Logo]

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 1: First Steps

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/first-steps.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/first-steps.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Vocabulary

A 10,000ft view of the world

	General Topics:

	
	Software: A program that runs on a computer.

	Operating System: Computer software that manages other software.

	GNU/Linux: A free Operating System.

	Computer Security: Like physical security but harder to solve with a
baseball bat.

	Virtual Machine: A computer emulated in software.

	Development:

	
	Version Control: A way to track changes and contributions to a
project.

	Continuous Integration: Releasing updates continuously.

	Buzzwords:

	
	FOSS: Free (and Libre) Open Source Software. Free as in Speech, not
Free as in Pizza (but that too usually).

	‘The Cloud’: Computers somewhere else.

	Containers: Not virtual machines, but basically virtual machines.

TODO: What Vocabulary Do You Know?

What other vocabulary can you think of related to DevOps?

What about Silicon Valley, Programming, System Administration, etc?

Note

This is a TODO. It’s basically an exercise or activity but with a
cheeky name. Try them out if you don’t feel confident in a topic.

Notation

	
	Variable (use whatever word you like here e.g., foo, bar, baz)

	
	$ONE_VARIABLE_NOTATION

	<another notation for variables>

	
	Literal (copy this exactly)

	
	copy_me_exactly

	
	Comments (parts of the code just for humans)

	
	this_is(code) # everything after the octothorp is a comment!

	other_code(line) // This can also be a comment. It depends on the
langauge!

	Code-block:

#! /usr/bin/env python
This is a code block.
Most of the time you can copy this code and run it exactly as is.
It should be clear Where it 'goes' and how to run it based on context.
print('Hello world!')

$ echo Hello World # Copy the text after `$` into your termianal and press enter.

TODO: Reading Examples

Trick question: how would you read this

#!/bin/python
dogs = ['$BREED_ONE', '$BREED_TWO', '$BREED_THREE']
for breed in dogs:
 print(breed)

Answer: Reading Examples

Replace the $BREED_N with actual dog breeds.

#!/bin/python
dogs = ['corgie', 'pug', 'french bulldog']
for breed in dogs:
 print(breed)

Getting Setup on Linux

[image: Tux Linux Logo]

Lecture Setup

	
	Get login credentials from your lecturer.

	
	You will be provided a username, password, host, and
port.

	Linux/Mac:

	
	Open a terminal and verify you have ssh installed by
entering the command ssh --version.

	Run ssh -p <port> <username>@<host> and enter the password when
prompted (it will hide your password in the terminal).

	Windows:

	
	Install an SSH Client (install Putty [http://www.putty.org/])

	Log into your remote Linux environment using the credentials given to
you.

	Under Host Name (or IP address) enter <user>@<host>, under
Port enter <port>.

	You will be prompted for your password in new window, it will hide
the password as you type it.

Home Setup

We suggest you install Vagrant [https://www.vagrantup.com/docs/installation/], a tool which makes it easy to run and
acquire Virtual Machines [https://en.wikipedia.org/wiki/Virtual_machine].

You may also need to install VirtualBox [https://www.virtualbox.org/], a tool necessary for Vagrant to
function.

[image: Vagrant logo]
 [https://www.vagrantup.com/]

TODO: Change Your Password!

Challenge Change your password on your Linux machine.

$ passwd
Changing password for user <user>.
Changing password for <user>.
(current) UNIX password: # Enter old password, hidden
New password: # Enter new password, also hidden
Retype new password:
passwd: all authentication tokens updated successfully.

Don’t forget: when you login next time, use the new password you just
set.

Further Reading

	More information on Virtual Machines [https://en.wikipedia.org/wiki/Virtual_machine].

	Install Putty [http://www.putty.org/] if you want to access a remote Linux box.

	Install Vagrant [https://www.vagrantup.com/docs/installation/] if you want to run a local Linux Virtual machine.

	Install VirtualBox [https://www.virtualbox.org/] in addition to Vagrant for local virtual machines.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 2: Operating Systems

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/operating-systems.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/operating-systems.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

What an Operating System is

[image: The OS in relation to Hardware, Applications, and Users.]
 [https://en.wikipedia.org/wiki/File:Operating_system_placement.svg]

Anatomy of an OS

[image: How the kernel fits into the OS stack.]
 [https://commons.wikimedia.org/wiki/File:Kernel_Layout.svg]
	User Interface: What you interact with. Window Managers for instance.

	Application Layer: What developers use to make software run.

	Kernel: The Core of the OS. Makes communication between hardware and
applications sane.

	Hardware: What does the actual computations. The thing your keyboard is
plugged into.

Types of Operating Systems

Popular Operating Systems

	UNIX
	Linux
	Android

	Debian

	RHEL

	MacOS / Darwin

	FreeBSD

	Windows

GNU/Linux

Welcome to the Family

[image: GNU+Linux Logo]

Flavors of Linux

	
	Debian

	
	
	Ubuntu

	
	LinuxMint

	
	RedHat

	
	RHEL

	Fedora

	Centos

	
	Gentoo

	
	ChromeOS

	Slackware

	ArchLinux

TODO: Pop Quiz

	What are some different types of Operating Systems?

	What constitutes a ‘Distribution’ of Linux?

	How is Linux different from Windows? OSX?

	How is Debian different from Gentoo?

Further Reading

	OSU Courses:

	
	CS 344: Operating Systems I

	
	Required course for all CS Students at OSU.

	
	Covers fundamentals of low-level programming concepts.

	
	Multi-threaded programming

	Read / Write operations

	Socket programming

	CS 444: Operating Systems II

	
	Required course for all CS Students at OSU.

	
	Covers kernel hacking and low-level OS design.

	
	IO / Process scheduling

	Building kernel modules

	Memory management

	Free Online Resources:

	OSDev.org [http://wiki.osdev.org/Main_Page] is a wiki dedicated to helping people develop their own
operating systems. It’s a big leap from this lesson, but great if you’re
interested in learning the nitty-gritty.

Operating Systems Design and Implementation [https://amzn.com/0136386776] by Andrew S. Tanenbaum is a
classsic in the world of OS Development. It’s also a big leap, but can
teach you more about how Operating Systems work than you ever thought there
was to know.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 3: Shell Navigation

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/shell-navigation-os.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/shell-navigation-os.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

The Shell

A shell is a text-based user-interface for a computer.

[image: sea shell]
 [https://en.wikipedia.org/wiki/File:Cypraea-moneta-001.jpg]
Shell Examples

	sh

	Required by all POSIX Operating Systems.

	bash

	Default on most GNU/Linux-based Operating Systems.

	csh

	Default shell on most BSD (Unix) based Operating Systems

	fish

	Useful but not sh compliant shell.

	zsh

	The hip new shell on the block.

Navigation Concepts

Basic Shell Commands

$ pwd # Prints the current working directory (where you are)
$ ls # Prints the contents of the current working directory
$ cd <path/to/other/directory> # Navigates to a new directory.
$ echo "some thing $AND_VARS" # Prints a string to the screen.
$ cat foo.txt bax.txt # Prints the contents of a file(s) to the screen.
$ grep foo file.txt # Searches `file.txt` for the string `foo`
$ less file.txt # Prints a file to the screen so you can arrow up/down.
$ env # Prints environment variables to the screen.
$ whoami # Prints out current user
$ help # When in doubt, always type help.

Shell Scripts

about_me.sh

#!/bin/sh
if [$(whoami) == "root"]; then
 echo "You're root!"
else
 echo "Your username is $(whoami)"
 echo "Your home-directory is $HOME"
 echo "Your current directory is $PWD"
 echo "Your computer's host-name is $HOSTNAME"
fi

Invoke with:

$ chmod +x about_me.sh # Tell Linux that this can be run as a program.
$./about_me.sh # Invoke the script.

File Paths

	.

	The current directory.

	..

	The parent directory.

	~

	Alias for your home directory.

	/

	Separates directories: one_dir/another_dir/last_dir

Alone, or at the start of a path, it is the root directory.

$ tree -F
.
|-- bar/
| |-- one
| `-- two
|-- baz/
`-- foo/
 `-- a/
 `-- b/

5 directories, 2 files

Special Characters

	Wildcard (*)

	Used as a stand-in for any character(s).

Example: cat *.log cats all files in the current working directory
ending in .log.

	End of line ($)

	Used to specify the end of a regex. We’ll cover what regex is later.

	Curl braces ({ })

	Used to specify a set.

Example: ls {foo,bar,baz}ley-thing expands to ls fooley-thing
barley-thing bazley-thing

Escape special characters (treat them as normal characters) with the escape
character (\).

Type Less, Tab More

Pressing the tab key auto-completes a command, file-path, or argument in
your shell.

Pressing tab multiple times completes the command to the best of the
shells ability and then lists the possible completions (if there are any).

$ ls b # <tab>
$ ls ba # <tab>
bar_thing/ baz_thing/
$ ls bar # <tab>
$ ls bar_thing

TODO

Further Reading

	BASH Programming - Introduction HOW-TO [http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html]

	A free online resoruce of learning bash programming. Covers some concepts
we’ll get to later in DOBC, but a good resoruce to have on hand.

	Running rm -rf / on Linux [https://youtu.be/D4fzInlyYQo]

	This video demonstrates what happens when you ‘delete your hard-drive’ on
Linux. A fun watch!

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 4: Users, Groups, Permissions

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/users-groups-permissions.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/users-groups-permissions.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

The User

You... ish.

$ whoami # your username
$ who # who is logged in?
$ w # who is here and what are they doing?
$ id # user ID, group ID, and groups you're in

Sometimes robots are users too: Apache, Mailman, ntp.

What a User has

/etc/passwd:

root:x:0:0:root:/root:/bin/bash
username:password:uid:gid:uid info:home directory:shell

What Users Can Do

	Change Passwords with the passwd command.

	Act as Another user with su.

$ su $USER # become user, with THEIR password
$ su # become root, with root's password
$ sudo su - # use your password instead of root's
$ sudo su $USER # become $USER with your password

	Act as themselves.

	ls -l to see file permissions.

	Check the file’s group and user.

	Check the file’s read, write, and execute bits.

[image: Sudoers Naught List]
 [https://www.xkcd.com/838/]

Managing Groups and Users

$ cat /etc/passwd
username:x:UID:GID:GECOS:homedir:shell

$ useradd <user_name> # vs adduser, the friendly Ubuntu version
$ userdel <user_name>
$ passwd

$ groupadd
$ usermod
$ groupmod
$ cat /etc/group
 root:x:0:

[image: xkcd letting go]
 [https://www.xkcd.com/215/]

Examples of Non-Human Users

	mailman: For the mailing list program.

	apache: For the HTTP Server.

	postfix: For the other mail program.

Root and Sudo

	Root:

	Basically god on Linux.

[foo@compe ~]$ yum install httpd # Runs command as `foo` user
Loaded plugins: fastestmirror, ovl
ovl: Error while doing RPMdb copy-up:
[Errno 13] Permission denied: '/var/lib/rpm/__db.002'
You need to be root to perform this command.
[foo@compe ~]$ sudo yum install httpd # Runs command as `root` user.
password:
Loaded plugins: fastestmirror, ovl
[... installs correctly ...]

[image: Sudo get me a sandwich.]
 [https://xkcd.com/149/]
Warning

Acting as root is dangerous! You can accidentally delete your filesystem,
forcing you to completley re-install your OS! Type carefully.

TODO

	Create a user on your system for yourself, with your preferred username.

	Give your user sudo powers.

	Use su to get into your user account.

	Change your password.

	Create a directory called bootcamp in your home directory.

	Create a group called devops.

Further Reading

	Understanding Linux File Permissions [https://www.linux.com/learn/understanding-linux-file-permissions]

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 5: Files

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/files.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/files.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

About Files

Everything in Linux is a file... except the things that aren’t.

Files have:

	Owners

	Permissions (what different people can do with it)

	An inode (a low-level description of the file)

	Size

	Filename

$ ls -il
total 8
2884381 drwxrwxr-x 5 test test 4096 Nov 6 11:46 Documents
2629156 -rw-rw-r-- 1 test test 0 Nov 13 14:09 file.txt
2884382 drwxrwxr-x 2 test test 4096 Nov 6 13:22 Pictures

Everything is a file!?

Yes. Except the things that aren’t..

int read_medical_device_data(int device_file_pointer) {
 // Open a connection to the device
 int * stream = open(device_file_pointer);
 // Write the stream of data to the screen
 write(STDOUT, stream);
 // Do some other stuff with that data
 // Close the data stream
 close(stream);

 return EXIT_SUCCESS;
}

File Extensions

.jpg, .txt, .py

Not necessary, more of a recommendation.

$ ls
some_text_file squirrel

$ file some_text_file
some_text_file: ASCII text

$ file squirrel
squirrel: JPEG image data, JFIF standard 1.01

Hidden Files

Any file starting with . is called a hidden file and is not listed by
default.

Adding the -a flag to ls command includes hidden files in your output.

$ ls
Documents file.txt Pictures

$ ls -a
. .. Documents file.txt .hidden_file Pictures .vimrc

Finding Metadata with ‘ls -l’

$ ls -l
drwxrwxr-x 5 test test 4096 Nov 6 11:46 Documents
-rw-rw-r-- 1 test test 0 Nov 13 14:09 file.txt
drwxrwxr-x 2 test test 4096 Nov 6 13:22 Pictures
---------- ------- ------- -------- ------------ -------------
 | | | | | |
 | | | | | File Name
 | | | | +--- Modification Time
 | | | +------------- Size (in bytes)
 | | +----------------------- Group
 | +-------------------------------- Owner
 +-- File Permissions

Editing Metadata

$ chown root myfile
 # Change the owner of myfile to "root".

$ chown root:staff myfile
 # Change the owner of myfile to "root" and group to "staff".

$ chown -hR root /mydir
 # Change the owner of /mydir and subfiles to "root".

$ chgrp -R devops /home/$yourusername/bootcamp
 # Make the group devops own the bootcamp dir

chmod and Octal Permissions

+-----+--------+-------+
| rwx | Binary | Octal |
+-----+--------+-------+
---	000	0
--x	001	1
-w-	010	2
-wx	011	3
r--	100	4
r-x	101	5
rw-	110	6
rwx	111	7
+-----+--------+-------+

	u, g, o for user, group, other

	-, +, = for remove, add, set

	r, w, x for read, write, execute

Executing a File?

For instance:

$ ls -alh my-script
-r-xr-xr-x 1 username username 1.9K Sep 27 09:44 my-script

$ cat my-script
#!/bin/bash
The above line tells Linux how to invoke the script on my behalf.
echo 'This is a script being run without using bash!'

$./my-script # my-script is invoked just like a compiled binary!
This is a script being run without using bash!

Types of Files

	- is a normal file

	d is a directory

	b is a block device

	l is a symlink

Directories

Directories are also files!

	+r allows you to read the contents of the directory.

	+w allows you to add files to the directory.

	+x allows you to use the directory at all.

$ ls -alh | grep foobarbaz
drw-rw-rw- 2 voigte voigte 4.0K Sep 29 10:47 foobarbaz

$ ls -alh foobarbaz # Below is the literal output, not psuedo-output
ls: cannot access foobarbaz/.: Permission denied
ls: cannot access foobarbaz/..: Permission denied
total 0
d????????? ? ? ? ? ? .
d????????? ? ? ? ? ? ..

TODO: Messing with Files

$ touch foo # create empty file called foo

	Create an empty file in /home/$yourusername/bootcamp.

	Who can do what to the file?

	Change the group to devops.

	Make a file called allperms and give user, group, and world +rwx.

	Make more files and practice changing their permissions.

Further Reading

	Permission Mishaps [http://serverfault.com/questions/93752/linux-permission-when-things-go-wrong-mishaps-gotchas-for-newbies/93759]

	Access the Linux kernel using the /proc filesytem [http://www.ibm.com/developerworks/library/l-proc/index.html]

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 6: Packages, Software, Libraries

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/packages-software-libraries.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/packages-software-libraries.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Software

Everything that isn’t hardware.

	Code that is run on a Computer.

	Binaries.

	Scripts.

Libraries

	Often used to make development easier.

	Rarely run on it’s own.

	Shared code.

Package Management

	Automagically manage software and libraries on your system.

	Examples:
	Android Play Store

	Apple App store

	Steam

Core Package Management Functionality

TLDR: To take care of installation, removal, and updates of software.

Popular Linux System Package Managers

Popular Linux Package Managers:

	Apt (.deb, dpkg)

	Used by default on the Debian, Ubuntu, Linux Mint operating systems.

	Yum (.rpm, rpm)

	Used by default on the RedHat, CentOS, Fedora operating systems.

Programming Langauge Package Managers

Examples:

	Python: pip

	Ruby: gem, rubygems

	Haskell: cabal

	NodeJS: npm

	... and so on forever ...

Other Package Managers

	Portage

	The Source-based package manager for Gentoo.

	Yaourt

	An Arch User Repository wrapper for Pacman, the Arch Linux Package manager.

	Nix

	A ‘Fully Functional/Transactional’ package manager.

	Brew

	An Open Soruce package manager for OSX.

	Chocolatey

	A package manager for Windows.

Installation from Soruce

How to install a package from source:

Using grep as an example:

$ wget http://mirrors.kernel.org/gnu/grep/grep-2.25.tar.xz
$ tar -Jxvf grep-2.25.tar.xz
$ cd grep-2.25
$./configure --prefix=$HOME/bin/
$ make
$ make install

TODO: Install sl

	Install the git, gcc, make, ncurses-bin, ncurses-base,
libncurses5-dev, and libncurses5-dev packages via package manager.

$ sudo apt install git gcc make ncurses-bin ncurses-base libncurses5-dev libncurses5-dev
[...]

	Install sl from source into the directory ~/bin/.

$ git clone https://github.com/mtoyoda/sl.git
[...]
$ cd sl
$ make
gcc -O -o sl sl.c -lncurses
$ mkdir ~/bin
$ ln sl ~/bin/
$ echo "export PATH=$PATH:$HOME/bin" >> ~/.bashrc
$ source ~/.bashrc
$ whereis sl
sl: /home/username/bin/sl
$ sl

Further Reading

	More about APT [https://debian-handbook.info/browse/stable/sect.apt-get.html]

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 7: Questions, Answers, Docs

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/questions-answers-documentation.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/questions-answers-documentation.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

When in doubt

$ <program> --help
$ <program> -h

Most programs allow you to pass a help flag which will print out basic
usage. This is useful as a quick reference for how to use the program.

Man Pages

$ man <program>

	Type / and then enter a keyword to see where that word appears.

	Press n to go to the next (and p to go to the previous) occurrence
of that word.

$ man man

MAN(1) Manual pager utils MAN(1)

NAME
 man - an interface to the on-line reference manuals

SYNOPSIS
 man [-C file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L
 locale] [-m system[,...]] [-M path] [-S list] [-e extension] [-i|-I]
 [...]

DESCRIPTION
 man is the system's manual pager. Each page argument given to man is
 normally the name of a program, utility or function. The manual page
 [...]

Anatomy of a Man Page

	Most Man Pages include:

	
	Name

	Flags

	Description

	Basic Usage

	Authors

	If you’re lucky they will also include:

	
	A Good description

	Advanced Usage.

	Examples

	History

	See Also

Sections of Man

	Executable programs or shell commands

	System calls (function provided by the kernel)

	Library calls (functions provided from within libraries)

	Special files (usually found in /dev)

	Files formats and conventions eg /etc/passwd

	Games

	Miscellaneous (including macro packages and conventions), e.g., man(7),
groff(7)

	System administration commands (usually only for root)

	Kernel routines [Non standard]

Note

Some distros use info instead of man. To learn more about the
info command, see Further Reading.

Project Docs

	Where to look:

	
	http://docs.some-random-project.io/

	http://some-random-project.io/docs/

	http://organization.com/some-random-project/

Questions and Answers

	Stack Overflow

	Forums

	Mailing Lists

	Blogs

[image: XKCD 979, Wisdom of the Ancients]
 [https://xkcd.com/979/]

How to Talk to People

	Chatrooms

	Meetups

	Face to Face (!?)

IRC

	Quick Facts:

	
	Internet Relay Chat (IRC)

	Very old (RFC 1459, May 1993)

	Works on everything (Terminal, GUI, Web-browser, etc)

	The people you want to listen to are there

	Oregon State ran one of the first servers ever!

TODO Getting on IRC

To get on IRC, Use irssi or weechat in screen:

This step is optional, but persistent IRC is cool
$ ssh <username>@<a remote linux server>

start screen with the name 'irc'
$ screen -S irc

start your client in the 0th window of the screen session
$ irssi
or
$ weechat-curses

exit irc screen with CTRL+a, CTRL+d
exit ssh session with CTRL+d or 'exit'
to get back to irc:
$ ssh <username>@<preferred shell host>
$ screen -dr IRC

Connecting and Setup

In the IRC client run these commands

/connect irc.freenode.net

/nick <myawesomenickname>
/msg nickserv register <password> <email>

/nick <myawesomenickname>
/msg nickserv identify <password>

/join #devopsbootcamp

Commands and Tips

	/list: Reports all the channels on a server.

	/topic: Reports current channel topic.

	/names: Reports nicks of users in channel.

	/join <channel>: Join a new channel.

	/whois <nick>: Learn about a person.

	/msg: Directly message an individual.

	/help <command>

	Tab-completion works with nicks

	You get a hi-light when your name is said.

	Symbols (@, +) are not part of names, show status in channel.

	chanserv and nickserv are robots.

	/msg nickserv help to get nick help.

	/msg chanserv help to get channel help.

IRC Jargon

[image: Jargon definition]

	ping/pong: “I would like to tell you something”/”I’m here, tell it to me.”

	tail: “~”

	hat: “@” Denotes admin status in a channel.

	nick: Your name.

	netsplit: When the IRC servers lose connection with eachother.

	kick/ban/k-line: GTFO

Asking for Help

It’s okay to ask for help. Here are some things to keep in mind:

	Ask yourself what should be happening?

	Ask yourself what is actually happening?

	Google the problem(s).

	Skim the manuals of each component.

	Identify a friend, mentor, or IRC channel who could help.

	When they’re not busy, give them a quick synopsis of points 1 and 2,
mentioning what possibilities you’ve ruled out by doing steps 3 and 4.

Contributions = expertise + time

Further Reading

	About info [http://www.computerhope.com/unix/info.htm]: info is an alternative to man that some distros use
instead.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 8: Version Control

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/version-control.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/version-control.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Text Editor: Nano

[image: nano in action]

	User types like normal.

	Arrow keys used to to navigate the cursor.

	^ + <key> Commands (control + key)

Version Control Systems

VCS is how one tracks changes, modifications, and updates to source files over
time. Creating a history of changes for a project over time.

	Used for:

	
	Documentation

	Code

	Configuration

	Collaboration

	Other Names Include:

	
	Source Control Management (SCM)

	Version Control Software

	Revision Control Software

What VCS Solves

[image: PHD Comics 'Final Draft'.]
 [http://www.phdcomics.com/comics/archive.php?comicid=1531]
	Version control solves a lot of problems:

	
	I have changes I want to integrate (merge) into the main project.

	I want to track the state of this project over time.

	I want to make some changes without possibly breaking what I have.

	... and much more.

Principles of VCS

Types of VCS

Git

Git is a Free and Open Source distributed version control system
designed to handle everything from small to very large projects with
speed and efficiency. (https://git-scm.com)

[image: Git logo]
 [https://commons.wikimedia.org/wiki/File:Git-logo.svg]
Setting up Git

$ sudo yum install git
$ git config --global user.name "My Name"
$ git config --global user.email "myself@gmail.com"
$ git config --global core.editor "nano"

TODO: Use Git Locally

Create a project with Git:

$ mkdir my-project
$ cd my-project # Always run `git init` inside of a project folder!
$ git init # Never inside of your home directory.

Add and commit a file to your project with Git:

$ touch newfile.txt
$ git add newfile.txt
$ git commit # Edit message in Nano, save the file, exit to commit.

To see which files are staged, unstaged, or untracked:

$ git status

To look through your repository history:

$ git log

To create and checkout a branch:

$ git branch # Shows your branches and current branch
* master
$ git checkout -b <new-branch> # Switches to new branch `<branch name>`
$ git branch
master
* new-branch
$ git checkout master # Switches to existing branch `<branch name>`

TODO: Working With a Git Repository

	Checkout a new feature branch on your repository.

	Create/Edit files on the new branch.

	Create a diff between the two.

	Locally merge the changes from your new branch into Master.

What not to do with Git

Workflow(s)

Everybody uses VCS differently. Choose the workflow that works best for
everybody involved.

[image: git-flow diagram]
 [http://nvie.com/posts/a-successful-git-branching-model/]

Centralizing Git

	Gitlab

	Open Source, free to run, feature rich.

	Github

	Very popular. Not Open Source but free for Open Source projects.

	Bitbucket

	Also popular, similar to Github, unlimited free private and public
repositories.

	Gitolite

	Bare-bones. Fewer feature than the previous three. Open Source, useful
for learning the nitty-gritty Git really works.

Cloning a Repository

$ cd /path/to/my/projects
$ git clone <some git url>
$ cd <new repo directory>
$ ls

TODO: Cloning Exercise

$ git clone https://github.com/DevOpsBootcamp/tinsy-flask-app.git

See http://git.io/vcVmB for more details about the tinsy-flask-app
repository.

$ cd tiny-flask-app
$ virtualenv venv
$ pip install -r requirements.txt
$ python script.py

Now if you go to <your ip address>:<http port> in your web-browser to see
a live version of the app!

Further Reading

	The Online Git Docs [https://git-scm.com/doc]

	This is a portal to all of the official docs on git-scm.com [https://git-scm.com]. It
includes everything from Getting Started to Git Internals. Check it
out!

	Git workflow tutorial [https://git-scm.com/about/distributed]

	This is the tutorial provided on https://git-scm.com/about/distributed.
It is a good high-level overview of some common git workflows.

	A successful Git branching model [http://nvie.com/posts/a-successful-git-branching-model/]

	This blogpost describes a git workflow (git-flow) that the Open Source Lab
bases their workflow on.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 9: Programming

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/programming.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/programming.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Paradigms

Programming is a big topic.

[image: Bill Nye the Science Guy, 'Huge!']
 [https://www.tenor.co/view/big-huge-large-billnye-gif-4824554]
Note: Pseudo-code

function f(x):
 # This line is a comment, not run by the computer.
 # Comments are only for human eyes.
 if x is less than than 5
 print "x is less than 5"
 else if x is less than than 10
 print "x is greater than five and less than 10"
 else
 print "x is greater than 10"

Variables & Constants

>>> x = "value"
>>> print(x)
value
>>> x = "different value"
>>> print(x)
different value

Data Types

Data types dictate how a piece of data should be handled within a program.

Flow Control

Flow Control allows you to execute code only if certain conditions are met.

	Conditionals: If / Else If / Else

	Conditionals are used to tell the program when to execute commands.

In pseudocode, they usually look something like

if some conditional statement is true
 do something
else if some other conditional
 do something else
else
 do a final thing

	Loops: For / While / Do While

	Loops are used to do multiple things, usually an indefinite number
of things.

For instance:

for every element, let's call it "foo", in a list "my_list"
 if foo is greater than five
 print(foo)
 else
 print(foo + " is too small")

While loops execute indefinitely (while something continues to
be true).

For loops iterate over a list (array) of elements or to a specific
number.

Input & Output

>>> user_input = get_input("Where would you like to go today? ")
>>> -> Where would you like to go today? Nebraska
>>> print(user_input)
>>> -> nebraska
>>> print(reverse(nebraska))
>>> -> aksarben

Functions

function read_file(x):
 # Also check that it exists! How convenient!
 if file_exists(x)
 v = read_file_to_string(x)
 return v
 else
 print("file does not exist")
 return Null

Structs

struct dog {
 breed: String
 height: Float
 color: String
 age: Integer
}

spot = struct dog # Create a new variable of type `struct dog`
spot.breed = "corgie" # Assign each member a variable.
spot.height = 1.5
spot.color = "Blond"
spot.age = 1
print(spot.breed, spot.height, spot.color, spot.age)

Objects

class chair():
 function init(material):
 self.material = material

 function rock():
 print("The ", self.material, " chair rocks slowly.")

>>> my_chair = chair.init("plastic")
>>> my_chair.rock()
>>> -> The plastic chair rocks slowly.

Libraries

import math_lib

print(math_lib.pi, math_lib.pow(2, 5), math_lib.tan(79.3))
prints out "3.14 32 .951"

TODO: Write Pseudo-Code

	Write pseudo-code to do the following tasks:

	
	Count to 20 (hint: for loop).

	Get user input and print it.

	Generate prime numbers.

	Hints:

	
	Break the problem down to the simplest steps.

	Don’t worry about the details.

	This is pseudo-code! Get creative.

Python

$ sudo <apt or yum> install python

[image: python programming language logo]
 [http://python.org]
Python Datatypes

	You don’t need to declare the type of your variables, Python will assume
the type of your variable and type it for you.

	Python is a duckly-typed language. If it walks like a duck and quacks like
a duck, then Python treats it like a duck. As long as an object implements
the proper interfaces, it can act like any type it wants.

[image: _images/duckly.gif]

	Type
	Example

	boolean
	True

	integer
	7

	long
	18,446,744,073,709,551,615

	float
	12.4

	string
	"Hello World!"

	list
	['first', 'second']

	dict (map)
	{'key1': 'value', 'key2', 'value2'}

	tuple
	('value','paired value')

	object
	anObjects.variable == <value>

	None
	

Python Variables

This is a comment
boolean = True # boolean
name = "Lucy" # string
age = 20 # integer
pi = 3.14159 # float
alphabet = ['a', 'b', 'c']
dictionary = {"pi":3.14159, "sqrt 1":1}
winter = ('December', 'January', 'February', 'March')

print(name + " is " + str(age+1) + " this " winter[3])

REPL: Try it out

Open a REPL (Read Evaluate Print Loop):

$ python
>>> print("I'm in a REPL!")
>>> name = # <Your name>
>>> age = # <Your age>
>>> print(name + " is " + str(age))
>>> # We need to convert age from int to string so it can print!

Python Control Flow

if name == "Lucy":
 for month in winter:
 print name + " doesn't like " + month
else:
 print "My name isn't Lucy!"

Python Functions

def myfunction(arg1, arg2):
 return arg1 + arg2

print myfunction(1, 5)

[image: _images/function-machine.png]

Python Libraries

There are a few ways to use other code in your code:

from math import pi
x = pi

from math import *
x = pi

There are hundreds of Python libraries. If you’re trying to
do something and think “This has probably been solved...”, Google it!

Some libraries to know:

	sys

	os

	dateutil

	future

	And more [https://wiki.python.org/moin/UsefulModules]

Python (Virtual) Environments

$ sudo apt-get install python-virtualenv
$ sudo yum install

In each project you work on, you'll want to run
$ virtualenv venv
$ source venv/bin/activate
(venv)$ pip install <package>
(venv)$ deactivate

[image: _images/environments.jpg]

TODO: Practicing Python

Formalize the last TODO by writing them in Python.

Prove the program works by running the code!

Further Reading

	Python on Learnpython.org [http://www.learnpython.org/]

	The Python programming language’s website offers some good (free)
tutorials and reference documentation.

	Python on Codecademy [https://www.codecademy.com/learn/python]

	Codecademy is a great resource for learning many programming languages and
offers a good (free) beginner’s guide to Python.

	CS 160 [http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=160], 161 [http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=161], 162 [http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=162]

	These OSU courses focus on programming fundamentals covered in this lesson
in greater detail. Python is used in CS 160 and C/C++ is used in CS 161
and CS 162.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 10: Frameworks

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/frameworks.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/frameworks.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Frameworks

	Web-development frameworks.

	Game-development frameworks.

The job of a framework

To take care of the boring stuff.

Why and When to use a Framework

Use a framework if you are making a cookie cutter application.

If a framework exists for what you’re doing, consider using it.

Types of Frameworks

	Testing Frameworks

	Web-app Frameworks

	Game Frameworks

Web Frameworks

Static vs Dynamic Sites

There are two types of websites: Static and Dynamic.

	Static Site

	Rarely changes, looks the same for all visitors (Blog, News, Document)

	Dynamic Site

	Changes based on who you are and what you do. (Search Engine, Login)

Popular Web Frameworks

	Python

	
	Django [https://www.djangoproject.com/]

	Offers many feature out of the box: Admin page, easy database
management, simple templating, convenient URL routing. Well documented
too.

	Flask [http://flask.pocoo.org/]

	Sparsely featured, offers very little out of the box and lets you
build up the features you need. Well supported with community
libraries and add-ons.

	Ruby

	
	Rails [http://rubyonrails.org/]

	Arguably the most popular web-framework out there. Similar to Django
in it’s features out of the box.

	Sinatra [http://www.sinatrarb.com/]

	Analogous to Flask on the Python side, very simple and easy to start
with, encourages building up the features you need.

	Node.js

	
	ExpressJS [http://expressjs.com/]

	A bare-bones NodeJS application, similar again to Flask.

Note: Model, View, Controller

[image: model view controller diagram]
 [https://commons.wikimedia.org/wiki/File:MVC-Process.svg]

URL Routing

app.route('/delete', delete_account)

def delete_account():
 if username was passed in the query parameters
 and password was passed in the query parameters
 and the user is in the database
 and passed password is correct

 database.remove_user(username)
 return success
 else
 return failure

Templating Engines (mad-libs!)

data = {"animal": "Cat", "number": 5}
template.render("You have {{ number }} {{ animal}}s! That's crazy.", data)

You have 5 cats! That's crazy.

TODO: Dynamic Website

Read the documentation on Flask [http://flask.pocoo.org/], a simple Python Web-Framework and build a
simple “Display the Time in each Timezone” Application.

When a user goes to our website they will see the server’s time and when they
go to app-url/<timezone code> they will see the timezone in that area of
the world.(http://flask.pocoo.org)

Further Reading

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 11: Testing

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/testing.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/testing.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Testing

def add_double(x, y):
 return 2*(x+y)

def test_add_double():
 expect(add_double(1, 2) == 6)

Why Testing Matters

[image: mars testing example]

Structure of a Test

Most test are consist of the same general structure:

Types of Testing

Concept: Mocking

Simulating behavior external to a program so your tests can run
independently of other platforms.

You’re testing your program, not somebody else’s. Mock other people’s
stuff, not your own.

Testing Frameworks

$ run tests
Finding tests...
Running tests in tests/foo.ext
Running tests in tests/bar.ext
Running tests in misc/test_baz.ext

Frameworks vs ‘The Hard Way’

While you can write tests the hard way:

var = some_function(x)
if var == expected_output:
 continue
else
 print("Test X failed!")

$ run test
Test 5 failed!

It’s usually easier to use a framework.

def simple_test():
 expect(some_function(x), expected_output)

$ run tests
....x.....
Test 5 failed.
Debug information:
...

Teardown and Setup

	Useful for:

	
	populate a test database

	write and delete files

	or anything you want!

def tests_setup():
 connect to database
 populate database with test data

def tests_teardown():
 delete all data from test database
 disconnect from database

def some_test()
 setup is called automaically
 use data in database
 asset something is true
 teardown is run automatically

TODO: Using Python’s unittest

Further Reading

	CS 362

	This OSU Course covers testing very in depth and even covers types of
testing including Random testing and testing analysis.

	Python Unittest Documentation [https://docs.python.org/2/library/unittest.html]

	A good reference for using Python’s built-in unit-testing module.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 12: Continuous Integration

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/continuous-integration.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/continuous-integration.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Continuous Integration

[image: Rough diagram of CI workflow]
 [http://www.agilenutshell.com/continuous_integration]

Automated Testing

[image: Automated Testing integrated into Github]

Tool: Travis CI

[image: Travis CI logo]
 [https://travis-ci.org]Runs test suites for:

	C / C++

	Java

	Javascript

	Python

	Ruby

	Many more on the Travis CI docs [https://docs.travis-ci.com/]!

Tool: Jenkins

	Does pretty much anything you can tell a computer to do, automatically.

	Builds and uploads binaries (releases).

	Runs tests.

	Reports build successes/failures.

	Also has plugins!

TODO: Setup Travis on a GH Repo

Further Reading

	Jenkins Documentation [https://jenkins.io/doc/]

	The Jenkins project documentation. If you need a broad overview read the
Getting Started with... docs.

	TravisCI Documentation [https://docs.travis-ci.com/]

	If you end up working on a large project on GitHub you’re going to
interface with TravisCI sooner or later.

	CircleCI Documentation [https://circleci.com/docs/]

	CircleCI is a tool we didn’t get to touch on. It is very similar to
Travis.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 13: Security

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/security.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/security.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Security

	se·cu·ri·ty (siˈkyo͝oritē/) [noun]

	The state of being free from danger or threat.

The safety of a state or organization against criminal activity such as
terrorism, theft, or espionage.

Types of Security

[image: XKCD on WiFi Security]
 [https://xkcd.com/416/]There are three main types of security in computing:

Threat Models

Threat models allow you to focus and limit your security resources on what
is necessary instead of what is possible.

Authentication, Authorization, Identity

[image: XKCD Identity Comic]
 [https://xkcd.com/1121/]

Passwords / Passphrases

Problems with Passwords

	People repeat passwords.

	Many passwords are easy to guess.

	Passwords are hard to remember.

Solutions for Passwords

Choosing Pass-phrases

Relevant funny bash.org post [http://bash.org/?244321]

[image: XKCD passwords comic]
 [https://xkcd.com/936/]

Certificates and HTTPS

[image: HTTPS Lock in Browser URL Bar]

Types of Attacks

[image: Frequency of online attacks (37% Cross Site Scripting, 16% SQL Injection, etc)]

Code Injection

[image: Billy Droptables XKCD Comic]
 [https://xkcd.com/327/]

Code Injection Attacks

<img src="http://example.com/?action="Delete All Accounts"

Code Injection Defenses

Web Server Attacks

[image: Apache Version Vulnerability]
 [http://news.netcraft.com/wp-content/uploads/2014/02/apache-vulns1.png]

Discovering Vulnerabilites

	
	Test and document the bug to verify it exists.

	If you think you encountered a bug, make sure you can replicate it. If
you can’t how can you expect the developers to recreate it?

	
	Disclose it privately to those responsible for fixing it.

	Provide examples – it’s basically a bug report, but through private
channels (not public tracker yet!)

	
	Give them time to release a patch before announcing it.

	Google waits 90 days to announce a bug after informing the developers.

TODO

Further Reading

	codebashing.com/sql_demo [http://www.codebashing.com/sql_demo]

	Try your hand at actual SQL Injection attacks

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 14: Databases

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/databases.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/databases.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Databases

Relating Data

Imagine a kitchen cupboard program that stores food currently in stock,
where it is, recipes using it, expiration dates, etc.

Databases and Structure

	Structure

	SQL databases are based on around Relational Algebra

<Table 1>
+---------------+-----------+-----------+
| <Primary key> | <Field 1> | <Field 2> |
+---------------+-----------+-----------+
| 1 | value | value` |
| ... | ... | ... |
+---------------+-----------+-----------+

<Table 2>
+---------------+-----------+--------------------------+
| <Primary key> | <Field 1> | <Foreign key to Table 1> |
+---------------+-----------+--------------------------+
| 1 | val | 7 |
| ... | ... | ... |
+---------------+-----------+--------------------------+

Concept: Relational Algebra

[image: Relational Algebra Example]

When to use a Database

When you have to work with a lot of well structured data.

	Databases are useful for two situations:

	
	Lots of data.

	High throughput.

Lots of Data

Concurrent Read/Writes

When not to use a Database

Types of Databases

There are two broad types of databases.

	SQL: Stores data in tables organized by column and field.

	NoSQL: Stores data differently than an SQL database.

	NewSQL: A middle-ground between SQL and NoSQL

SQL

	Examples:

	
	MySQL/MariaDB

	PostgreSQL

	SQLite

NoSQL

	Examples:

	
	MongoDB

	Apache Casandra

	Dynamo

	Redis

Database Concepts

Schemas

CREATE TABLE nobel (
 id int(11)
 NOT NULL
 AUTO_INCREMENT,
 yr int(11),
 subject varchar(15),
 winner varchar(50)
)
ENGINE = InnoDB;

Migrations

Raw SQL Syntax

SELECT

Example:

SELECT
 yr, subject, winner
FROM
 nobel
WHERE
 yr = 1960 AND subject='medicine';

INSERT

Example:

INSERT INTO
 nobel
VALUES
 ('2013','Literature','Herta Müller');

UPDATE

Example:

UPDATE
 nobel
SET
 winner='Andrew Ryan'
WHERE
 subject='Peace' AND yr='1951';

DELETE

Example:

DELETE FROM
 nobel
WHERE
 yr = 1989 AND subject = 'peace';

TODO: Crafting Queries!

Craft a query to get the following data out of our Nobel table:

	Who won the prize for Medicine in 1952?

	How many people were awarded the 1903 Nobel in Physics?

	How many prizes were awarded to Linus Pauling?

	How many people have won more than once? (Difficult)

Don’t worry about getting it exactly right! Craft pseudo-SQL!

Answers

SELECT winner FROM nobel
WHERE yr=1952 AND subject='medicine'; #(Selman A. Wksman)

SELECT * FROM nobel
WHERE yr=1903 AND subject='physics'; #(3)

SELECT * FROM nobel
WHERE winner='Linus Pauling'; #(2)

SELECT COUNT(*) FROM nobel
AS n0 INNER JOIN nobel AS n1 on n0.winner=n1.winner
AND (n0.yr!=n1.1 or n0.subject!=n1.subject); #(16)

TODO: Using a Real Database

Installing MySQL

Install mysql -- hit 'enter' to name your user root, and then enter
again for password
$ sudo yum install mysql-server

$ sudo service mysqld start # Start the service

$ mysql_secure_installation # Use this to set the root password

There is no current password
Hit 'yes' or 'y' for all options
Add a sensible password which you will remember
DO NOT MAKE IT YOUR USUAL PASSWORD.

$ sudo service mysqld status # Make sure service is running

$ mysqladmin -u root -p ping # Ping the database

$ mysqladmin -u root -p create nobel # Create a table for Nobel prizes

Configuration

	Open and edit /etc/my.cnf.

	Add default_storage_engine = InnoDB to your file.

Users

Login to the mysql shell with your root user credentials:

$ sudo mysql -p

mysql> CREATE USER 'me'@'localhost'
 IDENTIFIED BY 'password';

mysql> GRANT ALL PRIVILEGES ON nobel.*
 TO 'me'@'localhost'
 WITH GRANT OPTION;

mysql> exit

Importing Data

Get the database from the osl server
$ wget http://osl.io/nobel -O nobel.sql
put the database in a file called nobel.sql
$ sudo mysql -p nobel < nobel.sql
Open up mysql shell to execute queries
$ sudo mysql -p nobel

List all the tables
SHOW TABLES;
Print the layout of the database to the screen
DESCRIBE nobel;

Ways to Use a Database

Raw Queries

Native Queries

#!/usr/bin/python
import MySQLdb

db = ("localhost","testuser","test123","nobel")

cursor = db.cursor()

cursor.execute("SELECT subject, yr, winner FROM nobel WHERE yr = 1960")

data = cursor.fetchall()

for winner in data:
 print "%s winner in %s: %s " % (winner[0], winner[1], winner[2])

db.close()

Object Relational Mappers

	Maps an Object in an application to a database table or relationship.

	Talks SQL to the database, your favorite language to you.

	Lets you point to different databases with the same syntax.

	Intelligently manages transactions to the database.

SELECT * FROM nobel WHERE yr = 1960
for subject, yr, winner in session.query(Nobel).filter_by(yr=1960):
 print "%s winner in %s: %s " % (subject, yr, winner)

TODO: Use an ORM

Further Reading

	CS 340

	The CS 340 course at OSU (titled “Databases”) is a great introduction to
this topic. If you have the option to take it you should!

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 15: Dev Processes & Tools

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/development-processes-tools.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/development-processes-tools.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Code Analsis

(How to(find(the missing parenthesis)).

	Static

	These tools look at your code files and never actually run the program.

Includes Linting and Type Checking.

	Dynamic

	Dynamic Code Analysis tools actually run your code and make verifications
by watching how your program acts, where it fails, what it does in memory,
and if your tests are adequate enough.

Includes Debuggers, Memory Profiling Tools, and Code Coverage.

Debugging Tools

	Print (broken) variables.

	Read and reports error messages.

	Highlight (incorrect) syntax.

CLI Tools

	C/C++

	
	GDB: Used to inspect and debug everything in a C program from
variables to why it encountered a fatal failure. Generally called the
swiss-army-knife of debugging, a great tool to use in programming,
allows you to set ‘break points’ where the program stops mid-run and
you can see what it’s doing.

	Valgrind: Used specifically to inspect and debug memory issues.

$ valgrind ./tests/bin/lexer_tests
...
==6703== Conditional jump or move depends on uninitialised value(s)
...
==6703== by 0x4018C1: print_token (lexer.c:36)
==6703== by 0x4011F7: test_get_tok (lexer_tests.c:54)
==6703== by 0x4008CD: main (lexer_tests.c:8)
...
==6703== LEAK SUMMARY:
==6703== definitely lost: 192 bytes in 8 blocks
==6703== indirectly lost: 162 bytes in 10 blocks

	Python

	
	PDB: The GDB tool for python.

	Stack Traces: A feature built into Python. Explains what function
calls triggered a fatal failure. Not interactive but very useful for
debugging in development.

$ python some_script.py
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in f
TypeError: unsupported operand type(s) for * : 'int' and 'NoneType'

	NodeJS

	
	node debug: Built into NodeJS used to debug programs in the language.

	Node Inspector: External tool for debugging NodeJS programs.

Web Consoles

[image: Firefox Console]

	Ctrl+Shift+K (Command+option+k) in Firefox

	Ctrl+Shift+I (Cmd+opt+I) in Chrome

Linters

	Examples:

	
	flake8 (Python)

	slint (C)

	jshint (NodeJS)

src/times.js: line 407, col 20, Expected '{' and instead saw 'return'.
src/times.js: line 415, col 49, Missing semicolon.
src/times.js: line 407, col 58, 'error' is not defined.

TODO: Lint the Code!

Code Coverage

Integrated Development Environments (IDE)

[image: Debugging in Minecraft]
 [https://www.reddit.com/r/Minecraft/comments/3pnwgn/the_new_debug_screen/]
	Examples:

	
	Netbeans: Java

	Visual Studio: .NET

	PyCharm: Python

	Eclipse: Misc

Style Guides

[image: XKCD Code Quality comic]
 [https://xkcd.com/1513/]
Example: Linux Kernel Standards

The Linux kernel style guidelines are actually fun to read:

First off, I’d suggest printing out a copy of the GNU coding standards, and
NOT read it. Burn them, it’s a great symbolic gesture.

[https://www.kernel.org/doc/Documentation/CodingStyle]

NASA’s Jet Propulsion Laboratory style guidelines are very short and are
concerned with automated tooling to do code analysis:

All loops shall have a statically determinable upper-bound on the maximum
number of loop iterations.

[http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf]

Style Guides Enforced by Linters

Dependency Isolation

Python: Virtualenv

Setup and enter the virtual environment.

$ virtualenv <virtualenv name>
New python executable in /path/to/<venv name>/bin/python
Installing setuptools, pip, wheel...
done.
$ soruce <venv name>/bin/activate

Install a package. This installs it in the current working directory and so
does not ask for root permissions.

(<venv name>) $ pip install flask
[...]

To list all packages in the venv:

(<venv name>) $ pip freeze
click==6.6
Flask==0.11.1
itsdangerous==0.24
Jinja2==2.8
MarkupSafe==0.23
Werkzeug==0.11.11

Deactivate (leave) the venv.

(<venv name>) $ deactivate
$

Other Examples

	Node.js:

	Creates a node_modules directory and tracks dependencies in
package.json.

	Go:

	Dependencies are tracked via git repositories and using the go get command.

	Rust:

	Dependencies and versions are specified in Cargo.toml. All compiled
code (and dependencies) are stored in a target directory.

Development Servers

A Carbon Copy of the Production Environment(s)

TODO

Further Reading

	The Community Ruby Style Guide [https://github.com/bbatsov/ruby-style-guide#prelude] is a good resource for anybody learning
Ruby. It’s the style guide that Rubocop [https://github.com/bbatsov/rubocop] enforces.

	The Official Python Style Guide [https://www.python.org/dev/peps/pep-0008/] is a well respected style guide for
Python and is commonly accepted as the python style guide.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 16: DNS

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/dns.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/dns.html]
	Video

Warning

This lesson is under construction. Use it for learning purposes at your
own peril.

If you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Problems DNS Solves

[image: XKCD Google DNS Comic]
 [https://xkcd.com/1361/]The Domain Name System (DNS) translates human-readable URLs
(devopsbootcamp.osuosl.org) into computer IP addresses (140.211.15.183).

It works by storing records in a distributed tree-like hierarchy. It was
designed like this because it scales well.

Obligatory History Lesson

MIT 1
Yale 2
Harvard 3
ATT 4

...
joeBillson 14895
susan-gill 15832

How DNS Works

	Computer A wants to fetch data from devopsbootcamp.osuosl.org.
(notice the . at the end of the address).

	Computer A checks the local cache.

	If the address isn’t in the cache, A contacts the DNS root server.
(We’re actually skipping a few layers of cache. Read up for more info on
that.)

	One of the root nodes tells A to check the org node.

	The org node is contacted and tells A to check the osuosl node.

	The osuosl node tells it to check the devopsbootcamp node.

A DNS Request

	A computer makes a request for http://osuosl.org..

	This request gets sent to the root (.) of the DNS tree.

	The root sends it off to the org (top level domain) branch.

	The org node sends it off to the osuosl (domain) branch.

	The osuosl node sends it to the devopsbootcamp (subdomain) branch.

[image: An example DNS request]
 [https://en.wikipedia.org/wiki/File:An_example_of_theoretical_DNS_recursion.svg]

DNS Records

	Acronym
	Name

	A, AAAA
	IP Addresses

	MX
	SMTP Mail Exchangers

	NS
	Name Servers

	SOA
	DNS Zone Authority

	PTR
	Pointers for Reverse DNS Lookups

	CNAME
	Domain Name Aliases

A Records

The A record is used to map an IP address to a domain name. This is as
close to a ‘regular’ record as you can get.

osuosl.org. 300 IN A 140.211.15.183

MX Records

osuosl.org. 3600 IN MX 5 smtp3.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp4.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp1.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp2.osuosl.org.

NS Records

osuosl.org. 86258 IN NS ns1.auth.osuosl.org.
osuosl.org. 86258 IN NS ns2.auth.osuosl.org.
osuosl.org. 86258 IN NS ns3.auth.osuosl.org.

SOA (Authority) Records

	A DNS server is authoritative if it has a Start of Authority (SOA) record for
a domain

	The root-servers contain SOA records for the TLDs and gTLDs

	The NS servers for each (g)TLD contain SOA records for each registered domain

	... and so on...

CNAME Records

NXDOMAIN Records

Tells you there is no answer to a query:

Host something.invalid.osuosl.org not found: 3(NXDOMAIN)

Some ISPs and others never serve NXDOMAINS, instead they point you at
themselves.

The Root

$ dig ns .
;; ANSWER SECTION:
. 512297 IN NS i.root-servers.net.
. 512297 IN NS e.root-servers.net.
. 512297 IN NS d.root-servers.net.
. 512297 IN NS j.root-servers.net.
. 512297 IN NS b.root-servers.net.
. 512297 IN NS a.root-servers.net.
. 512297 IN NS f.root-servers.net.
. 512297 IN NS h.root-servers.net.
. 512297 IN NS g.root-servers.net.
. 512297 IN NS c.root-servers.net.
. 512297 IN NS m.root-servers.net.
. 512297 IN NS k.root-servers.net.
. 512297 IN NS l.root-servers.net.

The Thirteen

[image: The Thirteen traffic throughout the day]
 [http://stats.dns.icann.org/hedgehog/]

Example: Recursive Request

First we query a NS record for .:

$ dig ns .
;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:
. 518400 IN NS i.root-servers.net.
. 518400 IN NS a.root-servers.net.
. 518400 IN NS l.root-servers.net.
. 518400 IN NS f.root-servers.net.
. 518400 IN NS b.root-servers.net.
. 518400 IN NS d.root-servers.net.
. 518400 IN NS k.root-servers.net.
. 518400 IN NS g.root-servers.net.
. 518400 IN NS h.root-servers.net.
. 518400 IN NS m.root-servers.net.
. 518400 IN NS e.root-servers.net.
. 518400 IN NS c.root-servers.net.
. 518400 IN NS j.root-servers.net.

Next we query NS for org.:

$ dig ns com. @a.root-servers.net
;; QUESTION SECTION:
;org. IN NS

;; AUTHORITY SECTION:
org. 172800 IN NS a0.org.afilias-nst.info.
org. 172800 IN NS a2.org.afilias-nst.info.
org. 172800 IN NS b0.org.afilias-nst.org.
org. 172800 IN NS b2.org.afilias-nst.org.
org. 172800 IN NS c0.org.afilias-nst.info.
org. 172800 IN NS d0.org.afilias-nst.org.

;; ADDITIONAL SECTION:
a0.org.afilias-nst.info. 172800 IN A 199.19.56.1
a2.org.afilias-nst.info. 172800 IN A 199.249.112.1
b0.org.afilias-nst.org. 172800 IN A 199.19.54.1
b2.org.afilias-nst.org. 172800 IN A 199.249.120.1
<truncated>

Next we query NS for osuosl.org.:

$ dig ns osuosl.org. @199.19.56.1
;; QUESTION SECTION:
;osuosl.org. IN NS

;; AUTHORITY SECTION:
osuosl.org. 86400 IN NS ns3.auth.osuosl.org.
osuosl.org. 86400 IN NS ns2.auth.osuosl.org.
osuosl.org. 86400 IN NS ns1.auth.osuosl.org.

;; ADDITIONAL SECTION:
ns1.auth.osuosl.org. 86400 IN A 140.211.166.140
ns2.auth.osuosl.org. 86400 IN A 140.211.166.141
ns3.auth.osuosl.org. 86400 IN A 216.165.191.53

Next we query A for osuosl.org.:

$ dig a osuosl.org. @140.211.166.140
;; QUESTION SECTION:
;osuosl.org. IN A

;; ANSWER SECTION:
osuosl.org. 300 IN A 140.211.15.183

;; AUTHORITY SECTION:
osuosl.org. 86400 IN NS ns1.auth.osuosl.org.
osuosl.org. 86400 IN NS ns2.auth.osuosl.org.
osuosl.org. 86400 IN NS ns3.auth.osuosl.org.

;; ADDITIONAL SECTION:
ns1.auth.osuosl.org. 86400 IN A 140.211.166.140
ns2.auth.osuosl.org. 86400 IN A 140.211.166.141
ns3.auth.osuosl.org. 3600 IN A 216.165.191.53

TODO: Traverse the DNS Tree with dig

TODO: Run a DNS Server

Further Reading

	Try running dig on some of your favorite websites and see what you find.

	Read the manpage on dig and see what else you can find in the output.

	Try registering your own domain name and run a website using the Github
Student Pack [https://education.github.com/pack] resources like Digital Ocean and DNSimple.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 17: Configuration Management

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/configuration-management.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/configuration-management.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Configuration Management

“Configuration management is the process of standardizing resource
configurations and enforcing their state across IT infrastructure in an
automated yet agile manner.”

	Puppet Labs

user { 'audience':
 ensure => present,
}

Short History of CM

Concept: Infrastructure as Code

Infrastructure as code is the act of describing what you want your servers
to look like once, and using that to provision many machines to look
the same.

It turns pets into cattle. (more on this difference later)

	CM enables System Operation to define their infrastructure in code.

	Install packages, configure software, start/stop services.

	Ensure/guarantee a specific state of a machine.

	Provide history of changes for a system.

	Repeatable way of rebuilding a system.

	Orchestrate a cluster of services together.

Pull vs Push Models

	Pull Model

	
	When the server being provisioned (node) runs an agent (daemon) that
asks a central authority (master) if/when it has any updates that it
should run.

	Requires a daemon to be installed on all machines and a central
authority to be setup.

	Scales well, difficult to manage.

	Push Model

	
	A central server contacts the nodes and sends updates as they are needed.

	When a change is made to the infrastructure (code) each node is alerted
of this and they run the changes.

	Simple to manage and setup (usually uses prevalent SSH protocol), not
scalable.

Tools

Puppet

[image: Puppet Logo]

	Uses custom CM Language.

	Primary Push Model.

	Widely Adopted.

	Very stable.

	Difficult to get setup.

[Puppet Site [https://puppet.com/]]

Chef

[image: Chef Logo]

	Primarily Push Model.

	Code files are Ruby.

	Widely Adopted.

	Difficult to setup.

[Chef Site [https://www.chef.io/]]

CFEngine

[image: Ansible logo]

	Fast at execution, slow at adaptation.

	Very old.

	Stable.

[CFEngine Site [https://cfengine.com/]]

Ansible

[image: Ansible logo]

	Easy to use.

	Easy to setup.

	Does not scale well.

[Ansible Site [https://www.ansible.com/]]

SaltStack

	Easy to use.

	Hard to get started.

[SaltStack Site [https://saltstack.com/]]

Delcaration Configuration

packages [nginx, python, vim]
 state installed
 update true

service nginx
 state enabled
 alert service myapp_daemon

Chef Example

	Install apache and start the service

	Configuration is called a ‘recipe’

	Written as pure Ruby code

package "apache" do
 package_name "httpd"
 action :install
end

service "apache" do
 action [:enable, :start]
end

Note

Since chef uses Ruby you can do loops and other cool Ruby-isms in your
configuration management. This can be a gift and a curse.

Puppet Example

	Install apache and start the service

	Configuration is called a ‘manifest’

	Puppet DSL based on Ruby

package { "apache":
 name => "httpd",
 ensure => present,
}

service { "apache":
 name => "apache",
 ensure => running,
 enable => true,
 require => Package["apache"],
}

Note

Since Puppet designed it’s own language for Configuration managent you are
more limited in what you can express with Puppet, but this isn’t always a
bad thing. It’s feature rich and can do pretty much anything Chef can.

Ansible Example

	Install apache and start the service

	Configuration is called a ‘playbook’

	Uses YAML file format for configuration

- hosts: all
 tasks:

 - name: Install Apache
 yum:
 name: httpd
 state: present

 - name: Start Apache Service
 service:
 name: httpd
 state: running
 enabled: yes

Note

Ansible’s langauge is Yaml, which is basically JSON but easier to read
and write. This is similar to Puppet in it limits the possible
functionality, but again: these tools all achieve the same result, they
just get there in different ways.

TODO: Use Ansible to Provision localhost

$ pip install ansible

Further Reading

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 18: Application Isolation

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/application-isolation.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/application-isolation.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Application Isolation

Virtual Machines

[image: Anatomical Diagram of a VM]
 [https://commons.wikimedia.org/wiki/File:Hardware_Virtualization_%28copy%29.svg][vm] # ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.6 110564 3164 ? Ss 2015 11:17 /lib/systemd/systemd --system --deserialize 15
root 2 0.0 0.0 0 0 ? S 2015 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 2015 3:55 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< 2015 0:00 [kworker/0:0H]
[... 120+ more lines ...]

[host] # ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 200328 5208 ? Ss Aug25 0:44 /sbin/init
root 2 0.0 0.0 0 0 ? S Aug25 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Aug25 0:05 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< Aug25 0:00 [kworker/0:0H]
[... 240+ more lines ...]

OS Emulation

Containers

$ ps aux # Lists all processes running on an OS
PID USER TIME COMMAND
1 root 0:00 sh
6 root 0:00 ps aux

Not a Virtual Machine

[image: Diagram of Containers vs Virtual Machines]

CGroups + Systemd

Pros

	Virtual Machines
	Containers

	Complete process isolation
	Fast startup

	‘Battle Tested’
	Little overhead

Cons

	Virtual Machines
	Containers

	Slightly more overhead.
	Security concerns.

	Slow startup.
	No cross-kernel emulation.

	Cross-OS emulation.
	

Tools

	Virtual Machines
	Containers

	VirtualBox
	Docker

	VMWare
	Rkt

Virtual Machines

	VirtualBox

	An Open Source VM Manager.

Widely used and supported on Linux, Mac, and Windows.

	VMWare

	A closed source VM Manager.

VMWare is a widely used and tends to have better performance than Virtual
Box. While it can emulate Linux it does not work natively on Linux.

	KVM

	The Kernel-based Virtual Machine.

Linux’s native infrastructure for handling Virtual Machines and emulation.
Usually used in a larger emulation program, not alone.

Containers

	Docker

	The defacto CLI tool for creating and using containers.

Very popular and well integrated into other tools.

	RKT

	A competitor to Docker created by CoreOS. Approaches container management
from a different angle which has it’s advantages and disadvantages.

	chroot

	The oldschool way to use containers. Not a container in the modern
sense, but achieves similar isolation.

	Jails

	The BSD Unix form of containerization. Offers a level of secure isolation
not really possible in Linux.

TODO

Further Reading

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 19: Cloud Infrastructure

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/cloud-infrastructure.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/cloud-infrastructure.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

What the Cloud Looks Like

[...] a model for enabling ubiquitous, on-demand access to a shared pool of
configurable computing resources.

[image: A series of Cloud Platform logos]

Advantages over Bare Hardware

	Ephemeral: Creating and Destroying operating systems is quick and
painless.

	Cost effective: Pay for what you use.

	Low startup cost: Initial investment is cheap, <$100 as opposed to
>$1,000+. (unless you are running a private cloud, more on that in a
second).

Private Clouds

Public Clouds

Cloud + Configuration Management

Cattle VS Pets

Advantages

Disadvantages

TODO

Further Reading

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Lesson 20: Contributing to Open Source

	Homepage [http://devopsbootcamp.osuosl.org]
	Content [http://devopsbootcamp.osuosl.org/contributing-to-open-source.html]
	Slides [http://slides.osuosl.org/devopsbootcamp/contributing-to-open-source.html]
	Video

Warning

This lesson is under construction. Learn from it at your own risk. If
you have any feedback, please fill out our General Feedback Survey [https://goo.gl/forms/RyVZkJnownLKu8VI3].

Open Source

	Learn lots of new things, and grow as developers.

	Give back to a community that has given you something.

	You have more to contribute than you may realize!

	Meet amazing people.

	Personal fulfillment.

Community Benefit

Share the Love (and the Code)

Personal Benefit

	‘Learning the Ropes’ of a substantial code-base

	Working with others

	Getting code reviewed

	Documenting contributions

	Testing your changes

Free?

	Free Software:

	[Free Software] means that the users have the freedom to run, copy,
distribute, study, change and improve the software.

	The Four Freedoms:

	
	The freedom to run the program as you wish, for any purpose.

	The freedom to study how the program works, and change it so it does
your computing as you wish. Access to the source code is a
precondition for this.

	The freedom to redistribute copies so you can help your neighbor.

	The freedom to distribute copies of your modified versions to others.
By doing this you can give the whole community a chance to benefit
from your changes. Access to the source code is a precondition for
this.

gnu.org/philosophy/free-sw [https://www.gnu.org/philosophy/free-sw.en.html]

Acessing a New Community

Elitism vs Nice-ism

Communication style

Documentation and Guides

Things to Look for

	When are the top pull requests time-stamped? Anything older than 3-4 months
might not be ideal.

	Open / recent issues (especially with help wanted labels) are good.

	Many contributors means they’re used to people helping out.

How to Get Involved

Finding a Project

In order of perceived usefulness:

	Openhatch [http://openhatch.org/search]

	24 pull requests [http://24pullrequests.com/]

	BugsAhoy [http://www.joshmatthews.net/bugsahoy/]

	Showcased github projects [https://github.com/showcases]

	Trending github projects [https://github.com/trending]

	Choose a company, search “<Company Name> Open Source”

	Easy bugs

	GSOC submitters who didn’t get enough interns

	Search by language

	Search by project type – find something that interests you (web dev?
bioinformatics? video games?)

	Your immediate payment for contributions will be satisfaction, so pick
something satisfying

I Can’t Find a Project I Like!

That’s okay.

Sometimes you find the project, sometimes the project finds you.

First Steps

[image: Baby penguin stumbling.]

	Find a project

	Read Contributing and Getting Started docs

	Look at list of issues

	Do a thing!

	Write a test

	Fix a typo

	Deploy and update the installation docs

Know your Licenses

[image: Software Licensing]

	MIT: A very lax license permitting any (free and non-free) use of the
software.

	Apache: A little more precise, gives more rights to the developers.

	AGPL/GPL/LGPL: For when you love Open Source and want to spread the love.

	Creative Commons: For when you’re not writing code.

	http://choosealicense.com/

TODO: Find a FOSS Project

Further Reading

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

About

What is DevOps?

DevOps is a hybrid of skills from both Software Development (Dev) and
Computer Operations (Ops) intended to meet the unique demands of cloud
computing [https://en.wikipedia.org/wiki/Cloud_computing]. Software Developer and Systems Administrator are no longer
mutually exclusive job titles. Devs need more Ops knowledge to understand how
their application will run in the real world. Admins need more Dev
knowledge to design infrastructure that fit an app’s needs efficiently and
effectively. To top it off site reliability engineers and many modern
security roles require at least a little background in both development and
operations.

Purpose of DevOps BootCamp

DevOps BootCamp is an OSU Open Source Lab [https://osuosl.org] program dedicated to teaching core
software development and systems operation skills. The program is free and open
to any interested OSU students, community member, and online go-getter. DevOps
BootCamp provides a comprehensive Open Source education that is outside the
scope of regular Linux Users Group meetings and OSU Coursework.

What Students Get

	Mentorship from students and professionals with advanced skills in software
development and systems administration.

	Professional connections in the software industry.

	A welcoming environment to start learning, for those who have always wanted
to learn about software development and systems administration but were never
sure where to start.

	An opportunity to fill in knowledge gaps for self-taught coders or sysadmins.

	The skills to build and deploy Open Source software, or contribute to
existing projects

What the Open Source Lab Gets

	The OSL gets a larger pool of candidates to recommend to companies
interested in recruiting students.

	The OSL gets to work with a wider variety of students, helping it contribute
to the school of EECS.

	The Open Source Community gets more project contributors.

Target Audience

Our goal is to make the DevOps BootCamp program accessible to students and
community members from all backgrounds. Students should:

	Want to learn.

	Be willing to ask questions

	Be open to setting apart time to play with the tools you’ll be learning about
in the class.

Policies

Attendance

Attendance is not mandatory but highly suggested to get the most out of DBOC;
We will not spend class time reviewing material for those who skip a lecture
and each classes curriculum will build on what you learned the previous
session. All curriculum will be available online before and after class
sessions to get caught up.

BootCamp mentors will be available at scheduled times outside of regular
classes to help answer any questions about the training program’s content. If
you attend a lesson and don’t understand something then you are encouraged to
ask that question during the meeting since others are likely have the same
question.

Laptops

As the course progresses, you will need a laptop. We hope and recommend that
you decide to set up your laptop to dual-boot to Linux as the course
progresses, but it is not required. If you don’t own a laptop and are an OSU
student you can check out a laptop from the OSU Library for at least 24 hours
at a time.

As long as your laptop is new enough to boot from USB and connect to a
wireless network the exact specifications do not matter. You will be provided
with a remote virtual machine with which to do all class projects.

If you are not an OSU student and do not have access to a working laptop,
contact the DevOps BootCamp (email devopsbootcamp) organizers and they will
see whether one can be loaned out to you.

Get Involved

Mailing list

Join the mailing list [http://lists.osuosl.org/mailman/listinfo/devops-bootcamp] for updates.

IRC

Join us on irc.freenode.net in #devopsbootcamp (students will be
setting up an IRC network for the program early in the program).

Website & Curriculum

If you’d like to help edit this site, email devopsbootcamp or ping anyone in
#devopsbootcamp on Freenode with your GitHub username to get access to the
web site repo. You’ll also want to learn the ReStructured Text [http://sphinx-doc.org/rest.html] markup
language to edit the site, if you don’t already know it.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Schedule

The DevOps BootCamp content is available for free but meet-space guided
lectures are offered throughout the year. Check the schedule below for our
in-person lectures; each lecture covers a different part of the curriculum
covering the entire course during the OSU academic school year.

Warning

If you are working ahead be aware that the schedule and slides may be
subject to change. Check back regularly.

Fall

	Lesson
	Date/Time
	Location
	Description

	DevOps Daycamp
	Oct 1, 10am-3pm
	OSU KEC 1001 [https://goo.gl/maps/KZiKaCoeuru]
	DevOps DayCamp (DOBC Kickoff)

	Fall Meeting 2
	Nov 5, 11am-3pm
	OSU KEC 1001 [https://goo.gl/maps/KZiKaCoeuru]
	Files, Verson Control, Programming

	Fall Meeting 3
	Dec 3, 11am-3pm
	OSU KEC 1001 [https://goo.gl/maps/KZiKaCoeuru]
	Frameworks, Testing and CI

Winter

	Lesson
	Date/Time
	Location
	Description

	
	
	
	

Spring

	Lesson
	Date/Time
	Location
	Description

	
	
	
	

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	OSU DevOps BootCamp 0.0.1 documentation

Running DOBC

If you’re reading this it means you’re interested in running DOBC yourself.
It may have been passed on to you, or you may just like the curriculum and
want to use it to start your own DOBC. Either way, thank you for reading
this!

This page is a growing checklist, warning, notes, and fables from those
teaching and contributing to DOBC. If you read this, heed it’s warnings and
take it’s lessons to heart you will no doubt be on your way to success.

Before You Begin

Meet-Space Lectures

	Practice.

	Just like any public speaking engagement, you should review what you’re
going to do and practice it in real time. This means you should say the
things you’re going to say and even do the activities the students will do.

	Always have a buddy.

	Teaching alone can be done, but if at all possible try to have a teaching
‘buddy’. This person is at least about as expert on the topics you’re
covering as you are. Your buddy can field questions, help with TODOs, and
can even take over the lesson if you need them to (you might need to go to
the bathroom, who knows).

	Always be taking notes.

	As a lecturer you won’t always teach perfectly. You won’t get it perfect
the first, second, third, or even last time – but you should always
strive for perfection.

Take notes on what could have gone better, questions that were asked, and
confusions students had. The DOBC curriculum can be very dense and
sometimes it skims over important stuff. During each lesson be sure to
improve the curriculum based on your notes. Whoever teaches it next time
will thank you.

Online Engagement

Adding to Lessons

	Attribute Images

	We do our best to attribute images by linking them to the website we got
them from. If you add images to the website try to do the same.

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	OSU DevOps BootCamp 0.0.1 documentation

Index

 Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

 _static/devops.jpg
@ Vs ‘ :
3 4 B

devopsbobtcamp.osuosl.org

‘ 7

_static/comment-bright.png

_static/facebook-icon.png

_images/gitflow.png

_images/babypenguin.gif

_static/git-logo.png
g1t

_static/duckly.gif

_static/up-pressed.png

_static/code_quality.png
KEEP N MIND THAT TM
SELF-TAUGHT, S0 MY CODE
MAY BEA LITILE. MESSY.

LEMYE SEE-
T SURE
75 FNE.

\

L. MWOU.

v
THIS 15 LIKE BENG IN
R HOUSE BULLT BY A

CHILD USING NOTHING'
BUT A HATCHET AND A
PICTURE OF A HOUSE.

A

IT'S LIKE A SALAD RECIPE
URITTEN BY A CORPORATE.
LAWYER USING A PHONE

PUMDCORRECT THAT ONLY
KNEW EXCEL FORMULAS,

|

(

ITS LIKE SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED WITHOUT ERRORS|
\ 0Ky TUREFD
ASF/LE?U!DE

_static/gitflow.png

_images/xkcd215.png

_static/up.png

_images/anatomy-of-an-os.png

_images/mars.png

_images/inner-outer-join-venn.jpg
Inner Join Left Outer Join
Right Outer Join Full Outer Join

_images/git-logo.png
g1t

_images/code_quality.png
KEEP N MIND THAT TM
SELF-TAUGHT, S0 MY CODE
MAY BEA LITILE. MESSY.

LEMYE SEE-
T SURE
75 FNE.

\

L. MWOU.

v
THIS 15 LIKE BENG IN
R HOUSE BULLT BY A

CHILD USING NOTHING'
BUT A HATCHET AND A
PICTURE OF A HOUSE.

A

IT'S LIKE A SALAD RECIPE
URITTEN BY A CORPORATE.
LAWYER USING A PHONE

PUMDCORRECT THAT ONLY
KNEW EXCEL FORMULAS,

|

(

ITS LIKE SOMEONE TOOK A
TRANSCRIPT OF A COUPLE
ARGUING AT IKEA AND MADE
RANDOM EDITS UNTIL IT
COMPILED WITHOUT ERRORS|
\ 0Ky TUREFD
ASF/LE?U!DE

_static/babypenguin.gif

_images/devops.jpg
@ Vs ‘ :
3 4 B

devopsbobtcamp.osuosl.org

‘ 7

_images/duckly.gif

_images/xkcd-979.png
NEB/ER HAVE T FELT SO
(CWSE To ANCTHER SOUL.

/AND YET SO HELPLESSLY ALONE.
ASWHEN T GOOGLE AN ERROR
PAND THERES ONE RESULT

ATHRERD BY SOMEONE
WITH THE SAME PROBLEN

PND NO ANSWER
LAST RSTED To N 2003

WHO WERE YOU,
DENVERCODER??

|
WHT DD Iow SEER!

_images/jargon.jpg
Jargon

(noun) specialist vocabulary for a
particular subject or profession.

_images/mvc.png
S

UPDATES MANIPULATES
VIEW CONTROLLER
\
" @‘/
$ 0(9
N\ /

USER

_static/logo_puppet_labs.png
puppet

_static/continuous-integration.png
Developers

‘ Check code in Build agent listens for changes ...

—~
3 &=

Repostry
‘ X Error

and notifies team if there’s a problem.

_static/vm-diagram.png
Hardware (CPU, Memory, NIC, Disk)

_static/ajax-loader.gif

_static/xkcd_838.png
robm@homebox ~$ 5udo su HEY — WHO DOES

Possuer: e docts i SUDO REPORT THESE
robm i5 not in the sudoers file, DENTS® 707
This incident il be reported. N o

robm@homedox~ I YOU KNOU, ZVE
NEVER CHECKED.

(
Y

L]

_static/down-pressed.png

_static/dns-example.png
DNS Recurser

“Where's www.wikipedia.org?”

root
nameserver

2

e&

%) org.

nameserver

Ty 207142131938

wikipedia.org.

nameserver

198.41.0.4

204.74.112.1

207.142.131.234

_static/email.png

_static/down.png

_static/xkcd_416.png
STARTING WIFt AUTOCONFIG...

SEARCHING FOR WIFI...
FOUND NO OPEN NETWORKS.

FOUND SECURE NET
SSID “Lenhart Family”™

4

TRYING COMHON

PASSWORDS... FAILED.
CHECKING FOR WEP
WLNERABILITEES...

il
UM NONE

- FOUND.

4

CONNECTING TO
BLUETOOTH PHONE...

CALLING LOGAL SCHODL....

FOUND
LENHART
CHILOREN.

S

T

NOTIFYING FIELD AGENTS.
CHILDREN ACGUIRED.
CALLING LENHART PARENTS,
NEGOTIATING FOR WIF
PASSWORD

{

Rt
Rt

_static/xkcd_936.png
[alalalalajalallslolalnlalalals

WAS IT TROMBONE? NG,

‘—v—“f‘r‘— T—

i

FOUR RANDOM
COMMON WORDS

DIFRCOLTY To GUESS:

HARD

UNCOMHON ORER TROUBADOR. AND ONE OF
(oL GIBBRS) i || 7€ 0s whsa zero?
BASE RO N e e oERE s (P
2= 3 Davs AT 2345 Wm\zlﬂ -
Tr‘@u b4d or &3 1000 GUESSES /sec.
T T o (s e ot e
CAPS? COMMON NOVERAL | | b i e ot
o SN cuion || © WSWTM DIFFICULTY To REMEMBER:
oos IFFICOLTY T0 GUESS : IFFi :
(100 ¢ P00 1 0 ok 1 70 pu‘i“”“r'm ! EASY HARD
R
~ Ut BITS OF ENTROPY
correct horse battery stople

DIFFICULTY To REMEMBER:
YOUVE ALREADY

MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

_static/hedgehog.png
Hedgehog . een ™00 I T

Version 111 @ Tosin 27 ez zsoo0uTC Bl =" e

e Toerte et chann e s o by 3 e ot P

Queries by node
from 2014-07-27 00:00 UTC t0 2014-07-27 2359 UTC.

Toomi £ BuEEEE N -

=

_static/cloud_infra_shapes_and_sizes.png

_static/travis.png
validateUUID

returns true for a valid UID
returns false for an invalid UUID
returns false for a non-string UUID
returns false for null

213 passing (6s)

The command “npn run test_pg" exited with 0.
$ npn run linter

> timesynce0.0.0 linter /home/travis/build/osuosl/tinesync-node
> jshint ./src ./tests ./scripts & eslint ./src ./tests ./scripts

The react/jsx-quotes rule is deprecated. Please use the jsx-quotes rule instead

The conmand “npm run Linter" exited with 0.

Done. Your build exited with 0.

_static/logo_cfengine.jpg
CFENngine

_static/gnu-tux.png

_static/attack-statistics.png
According the security vendor Cenzic, the top vulnerabilities in March 2012 include:[®]

37% | Cross-site scripting

16% | SQL injection

5% | Path disclosure

5% | Denial-of-service attack

4% | Arbitrary code execution

4% | Memory corruption

4% | Cross-site request forgery

3% | Data breach (information disclosure)

3% | Arbitrary file inclusion

2% | Local file inclusion

1% | Remote file inclusion

1% | Buffer overflow

15% | Other, including code injection (PHP/JavaScript), etc.

_static/phd_final.gif
“FINAL doc

7
FINAL_rev.8.commentsS.
CORRECTIONS.doc

1
FINAL _rev.6.COMMENTS.doc

JORGE CHAM ©2012

N
FINAL_rev.18.comments?. F(NAL_rev‘zz‘comme’nfﬂ‘?‘
corrections?.MORE.30.doc corrections.10.#@%%WHYDD

WM. PHDCOMICS. COM

_static/xkcd_327.png
HI, THIS 15

YOUR SON'5 SCHOOL.
WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN /-\NAY /

b

DID YOU REALLY
INAME YOUR SON
Robert?); DROP
[TABLE Students; -~ 7

~OH,YES, UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR' STUDENT RECORDS.
T HOPE YOURE HAPPY.
! AND I HOPE
- YOUVE LEARNED
TOSANMZE YOUR
DATABASE INPUTS.

_static/youtube-icon.png

_static/xkcd_1121.png
T5— . WAT.
HOWJ DO T KNoW
IT5 REALLY YOU?

(0OH, GOOD QUESTION!

T BET WE (AN (ONSTRUTT A Co0L

PROOF-OF-IDENTIY PROTOQIL. TLL

START BY PICKING TWO RANDOM—
OH GoOD; IT5 You.

o)

~AO!

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/automated-testing.png
f
- ° All checks have passed

1 successful check

Hide all checks

v & continuous-integration/iravis-ci/push — The Travis Gl build passed Details
° This branch has no conflicts with the base branch
Merging can be performed automatically.
L4 SESSHFEES o view command line Instructons.
M Bi Ko EEE @R

‘nﬁ Write | Preview

Assignees

No one—assign yourself

1 participant
Notifications.

x Unsubscribe

‘You're receiving notfications
because you're on a team that was
mentioned.

£ Lock conversation

_static/logo_ansible.png
ANSIBLE

_static/securepass.png
| @ secure pugetsoundsg

ure.pugetsouns’y €3 ¥
‘This s an example of a secure page https://secure.pugetsoundsoftware.com

Visit Ask Leo!

_static/google-plus-icon.png

_static/web_console.png
Web Consoles Linters
- + Ctrl+Shift+K (Command+option+Kk) in Firefox Examples:
t:\l:#)’gite :f\m::grlgda aC fatal + Ctrl+Shift+I(Cmd+opt+I)in Chrome + flakes (Python)
4 - + slint (C)
 swiss-army-knife of o
Ise in programming, allows + jshint(NodeJs)
ere the program stops
hat it's doing. src/times.js: Line 407, col 20, E:
ly to inspect and debug src/times.js: line 415, col 49, Mis:

src/times.js: Line 407, col 58,

s
depends on uninitialised value(s)
ken (lexer.c:36)

_tok (lexer_tests.c:54)
xer_tests.c:8)

> Console | @ Debugger |} Style Edi... |@ Performa... Network B-= B|# ae x
body.loaded . section#slide_container.slides.layout-re... o @ Computed| Fonts | Box Model |Animations
<1DOCTYPE html> QFilter Styles +
eTenent intine
)

» <head></head>
~<body class="loaded"> @

» <section id="slide container” class="slides layout-regular></section>. ntal o (styles.css:17

 <section 1d="slide notes">e/sections height: 100%;
</body>

</ntat>

® Net © CS5 © JS ~ eSecurty ©Logging - Clear [Filter output

_images/attack-statistics.png
According the security vendor Cenzic, the top vulnerabilities in March 2012 include:[®]

37% | Cross-site scripting

16% | SQL injection

5% | Path disclosure

5% | Denial-of-service attack

4% | Arbitrary code execution

4% | Memory corruption

4% | Cross-site request forgery

3% | Data breach (information disclosure)

3% | Arbitrary file inclusion

2% | Local file inclusion

1% | Remote file inclusion

1% | Buffer overflow

15% | Other, including code injection (PHP/JavaScript), etc.

_static/github-icon.png

_images/logo_cfengine.jpg
CFENngine

_images/travis.png
validateUUID

returns true for a valid UID
returns false for an invalid UUID
returns false for a non-string UUID
returns false for null

213 passing (6s)

The command “npn run test_pg" exited with 0.
$ npn run linter

> timesynce0.0.0 linter /home/travis/build/osuosl/tinesync-node
> jshint ./src ./tests ./scripts & eslint ./src ./tests ./scripts

The react/jsx-quotes rule is deprecated. Please use the jsx-quotes rule instead

The conmand “npm run Linter" exited with 0.

Done. Your build exited with 0.

_images/phd_final.gif
“FINAL doc

7
FINAL_rev.8.commentsS.
CORRECTIONS.doc

1
FINAL _rev.6.COMMENTS.doc

JORGE CHAM ©2012

N
FINAL_rev.18.comments?. F(NAL_rev‘zz‘comme’nfﬂ‘?‘
corrections?.MORE.30.doc corrections.10.#@%%WHYDD

WM. PHDCOMICS. COM

_images/xkcd_327.png
HI, THIS 15

YOUR SON'5 SCHOOL.
WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN /-\NAY /

b

DID YOU REALLY
INAME YOUR SON
Robert?); DROP
[TABLE Students; -~ 7

~OH,YES, UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR' STUDENT RECORDS.
T HOPE YOURE HAPPY.
! AND I HOPE
- YOUVE LEARNED
TOSANMZE YOUR
DATABASE INPUTS.

_images/dns-example.png
DNS Recurser

“Where's www.wikipedia.org?”

root
nameserver

2

e&

%) org.

nameserver

Ty 207142131938

wikipedia.org.

nameserver

198.41.0.4

204.74.112.1

207.142.131.234

_images/xkcd_416.png
STARTING WIFt AUTOCONFIG...

SEARCHING FOR WIFI...
FOUND NO OPEN NETWORKS.

FOUND SECURE NET
SSID “Lenhart Family”™

4

TRYING COMHON

PASSWORDS... FAILED.
CHECKING FOR WEP
WLNERABILITEES...

il
UM NONE

- FOUND.

4

CONNECTING TO
BLUETOOTH PHONE...

CALLING LOGAL SCHODL....

FOUND
LENHART
CHILOREN.

S

T

NOTIFYING FIELD AGENTS.
CHILDREN ACGUIRED.
CALLING LENHART PARENTS,
NEGOTIATING FOR WIF
PASSWORD

{

Rt
Rt

_images/xkcd_936.png
[alalalalajalallslolalnlalalals

WAS IT TROMBONE? NG,

‘—v—“f‘r‘— T—

i

FOUR RANDOM
COMMON WORDS

DIFRCOLTY To GUESS:

HARD

UNCOMHON ORER TROUBADOR. AND ONE OF
(oL GIBBRS) i || 7€ 0s whsa zero?
BASE RO N e e oERE s (P
2= 3 Davs AT 2345 Wm\zlﬂ -
Tr‘@u b4d or &3 1000 GUESSES /sec.
T T o (s e ot e
CAPS? COMMON NOVERAL | | b i e ot
o SN cuion || © WSWTM DIFFICULTY To REMEMBER:
oos IFFICOLTY T0 GUESS : IFFi :
(100 ¢ P00 1 0 ok 1 70 pu‘i“”“r'm ! EASY HARD
R
~ Ut BITS OF ENTROPY
correct horse battery stople

DIFFICULTY To REMEMBER:
YOUVE ALREADY

MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

_images/cloud_infra_shapes_and_sizes.png

_images/gnu-tux.png

_images/hedgehog.png
Hedgehog . een ™00 I T

Version 111 @ Tosin 27 ez zsoo0uTC Bl =" e

e Toerte et chann e s o by 3 e ot P

Queries by node
from 2014-07-27 00:00 UTC t0 2014-07-27 2359 UTC.

Toomi £ BuEEEE N -

=

search.html

 Navigation

 		
 index

 		OSU DevOps BootCamp 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, OSU OSL & OSU LUG.
 Created using Sphinx 1.2.2.

_static/nano.png
GNU nano 226 MHew Buffe

T am cyping in nanc!

T can hold control and press o to save (Writeoutll]

Gt Help g writeu Read File Prev page Cue Texe e pos
£ Justify Where Ts Hext Page UncutTexr B To Speil

_static/Tux.png

_static/licensing.jpg

_static/minecraft_debug.gif
Game meny

_static/apache-vulns1.png
Millons of websites

3

8

8

10

Most popular versions of Apache (Top 15)

_Mercrarr

_static/seashells.jpg

_static/logo_chef.png
CHEF

_static/osl.png
OSL

OPEN SOURCE LAB

_images/continuous-integration.png
Developers

‘ Check code in Build agent listens for changes ...

—~
3 &=

Repostry
‘ X Error

and notifies team if there’s a problem.

_images/logo_puppet_labs.png
puppet

_images/vm-diagram.png
Hardware (CPU, Memory, NIC, Disk)

_images/xkcd_838.png
robm@homebox ~$ 5udo su HEY — WHO DOES

Possuer: e docts i SUDO REPORT THESE
robm i5 not in the sudoers file, DENTS® 707
This incident il be reported. N o

robm@homedox~ I YOU KNOU, ZVE
NEVER CHECKED.

(
Y

L]

_static/environments.jpg

_static/hypervisor-vs-containers.png
Containers vs. VMs

r Containers are isolated,
Ap) P pB but share 0S and, where
appropriate, bins/libraries

Container

Hypervisor (Type 2)

Host 0S Host 0S

_static/python.png

_static/xkcd-google-dns.png
THE RUMORS ARE TRUE. GOOGLE
WILL BE SHUTTING DOWN PLus—

ALONG WITH HANGOUTS, PHOTOS,
VOICE, DOCS, DRIVE, MAPS, GHAIL,
CHROME, ANDROD, AND SEPROH—

To FOQU5 0N OUR (ORE PROVECT:
THE 8.8.8.8 DNS SERVER.

Y

J
Googe

_static/file.png

_static/function-machine.png
WWW.MATHWAREHOUSE.COM

_static/xkcd_149.png
MAKE ME A SANDWICH,

WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /
A smomcn

[?3 R

_images/vagrant_logo.png
v VAGRANT

_images/xkcd-google-dns.png
THE RUMORS ARE TRUE. GOOGLE
WILL BE SHUTTING DOWN PLus—

ALONG WITH HANGOUTS, PHOTOS,
VOICE, DOCS, DRIVE, MAPS, GHAIL,
CHROME, ANDROD, AND SEPROH—

To FOQU5 0N OUR (ORE PROVECT:
THE 8.8.8.8 DNS SERVER.

Y

J
Googe

_images/python.png

_images/xkcd_149.png
MAKE ME A SANDWICH,

WHAT? MAKE
IT YOURSELF.

SUDO MAKE ME /
A smomcn

[?3 R

_images/hypervisor-vs-containers.png
Containers vs. VMs

r Containers are isolated,
Ap) P pB but share 0S and, where
appropriate, bins/libraries

Container

Hypervisor (Type 2)

Host 0S Host 0S

_images/huge.gif

_images/function-machine.png
WWW.MATHWAREHOUSE.COM

_images/apache-vulns1.png
Millons of websites

3

8

8

10

Most popular versions of Apache (Top 15)

_Mercrarr

_images/minecraft_debug.gif
Game meny

_images/operating-system-infographic.png
Hardware

_images/osl.png
OSL

OPEN SOURCE LAB

_static/operating-system-infographic.png
Hardware

_static/vagrant_logo.png
v VAGRANT

_static/mvc.png
S

UPDATES MANIPULATES
VIEW CONTROLLER
\
" @‘/
$ 0(9
N\ /

USER

_static/anatomy-of-an-os.png

_static/xkcd-979.png
NEB/ER HAVE T FELT SO
(CWSE To ANCTHER SOUL.

/AND YET SO HELPLESSLY ALONE.
ASWHEN T GOOGLE AN ERROR
PAND THERES ONE RESULT

ATHRERD BY SOMEONE
WITH THE SAME PROBLEN

PND NO ANSWER
LAST RSTED To N 2003

WHO WERE YOU,
DENVERCODER??

|
WHT DD Iow SEER!

_static/gnu.jpg

_static/mars.png

_static/xkcd215.png

_static/inner-outer-join-venn.jpg
Inner Join Left Outer Join
Right Outer Join Full Outer Join

_images/Tux.png

_images/environments.jpg

_images/nano.png
GNU nano 226 MHew Buffe

T am cyping in nanc!

T can hold control and press o to save (Writeoutll]

Gt Help g writeu Read File Prev page Cue Texe e pos
£ Justify Where Ts Hext Page UncutTexr B To Speil

_images/licensing.jpg

_images/logo_chef.png
CHEF

_images/seashells.jpg

_images/securepass.png
| @ secure pugetsoundsg

ure.pugetsouns’y €3 ¥
‘This s an example of a secure page https://secure.pugetsoundsoftware.com

Visit Ask Leo!

_images/xkcd_1121.png
T5— . WAT.
HOWJ DO T KNoW
IT5 REALLY YOU?

(0OH, GOOD QUESTION!

T BET WE (AN (ONSTRUTT A Co0L

PROOF-OF-IDENTIY PROTOQIL. TLL

START BY PICKING TWO RANDOM—
OH GoOD; IT5 You.

o)

~AO!

_images/logo_ansible.png
ANSIBLE

_images/automated-testing.png
f
- ° All checks have passed

1 successful check

Hide all checks

v & continuous-integration/iravis-ci/push — The Travis Gl build passed Details
° This branch has no conflicts with the base branch
Merging can be performed automatically.
L4 SESSHFEES o view command line Instructons.
M Bi Ko EEE @R

‘nﬁ Write | Preview

Assignees

No one—assign yourself

1 participant
Notifications.

x Unsubscribe

‘You're receiving notfications
because you're on a team that was
mentioned.

£ Lock conversation

_images/web_console.png
Web Consoles Linters
- + Ctrl+Shift+K (Command+option+Kk) in Firefox Examples:
t:\l:#)’gite :f\m::grlgda aC fatal + Ctrl+Shift+I(Cmd+opt+I)in Chrome + flakes (Python)
4 - + slint (C)
 swiss-army-knife of o
Ise in programming, allows + jshint(NodeJs)
ere the program stops
hat it's doing. src/times.js: Line 407, col 20, E:
ly to inspect and debug src/times.js: line 415, col 49, Mis:

src/times.js: Line 407, col 58,

s
depends on uninitialised value(s)
ken (lexer.c:36)

_tok (lexer_tests.c:54)
xer_tests.c:8)

> Console | @ Debugger |} Style Edi... |@ Performa... Network B-= B|# ae x
body.loaded . section#slide_container.slides.layout-re... o @ Computed| Fonts | Box Model |Animations
<1DOCTYPE html> QFilter Styles +
eTenent intine
)

» <head></head>
~<body class="loaded"> @

» <section id="slide container” class="slides layout-regular></section>. ntal o (styles.css:17

 <section 1d="slide notes">e/sections height: 100%;
</body>

</ntat>

® Net © CS5 © JS ~ eSecurty ©Logging - Clear [Filter output

_static/jargon.jpg
Jargon

(noun) specialist vocabulary for a
particular subject or profession.

_static/minus.png

_static/huge.gif

