
OSU DevOps BootCamp
Documentation

Release 0.0.1

OSU OSL
OSU LUG

November 19, 2016

Contents

1 Ready to Learn DevOps? Lesson 0: Start Here 3

2 Schedule 5
2.1 Fall . 5
2.2 Winter . 5
2.3 Spring . 5

3 Donate 7
3.1 Lesson 0: Start Here . 7
3.2 Lesson 1: First Steps . 10
3.3 Lesson 2: Operating Systems . 14
3.4 Lesson 3: Shell Navigation . 17
3.5 Lesson 4: Users, Groups, Permissions . 20
3.6 Lesson 5: Files . 23
3.7 Lesson 6: Packages, Software, Libraries . 26
3.8 Lesson 7: Questions, Answers, Docs . 28
3.9 Lesson 8: Version Control . 33
3.10 Lesson 9: Programming . 38
3.11 Lesson 10: Frameworks . 45
3.12 Lesson 11: Testing . 47
3.13 Lesson 12: Continuous Integration . 50
3.14 Lesson 13: Security . 52
3.15 Lesson 14: Databases . 56
3.16 Lesson 15: Dev Processes & Tools . 63
3.17 Lesson 16: DNS . 67
3.18 Lesson 17: Configuration Management . 72
3.19 Lesson 18: Application Isolation . 78
3.20 Lesson 19: Cloud Infrastructure . 81
3.21 Lesson 20: Contributing to Open Source . 82
3.22 About . 86
3.23 Schedule . 87
3.24 Running DOBC . 88

i

ii

OSU DevOps BootCamp Documentation, Release 0.0.1

DevOps BootCamp (DOBC) is a free course hosted by the OSU Open Source Lab. The course is dedicated to teaching
core software development and systems operation skills to passionate OSU students and community members.

DOBC is always 100% free for in-person and online students.

Contents 1

http://osuosl.org

OSU DevOps BootCamp Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Ready to Learn DevOps? Lesson 0: Start Here

DevOps Bootcamp’s curriculum is available for you to learn at your own pace. Get started now!

3

OSU DevOps BootCamp Documentation, Release 0.0.1

4 Chapter 1. Ready to Learn DevOps? Lesson 0: Start Here

CHAPTER 2

Schedule

The DevOps BootCamp content is available for free but meet-space guided lectures are offered throughout the year.
Check the schedule below for our in-person lectures; each lecture covers a different part of the curriculum covering
the entire course during the OSU academic school year.

Warning: If you are working ahead be aware that the schedule and slides may be subject to change. Check back
regularly.

2.1 Fall

Lesson Date/Time Location Description
DevOps Daycamp Oct 1, 10am-3pm OSU KEC 1001 DevOps DayCamp (DOBC Kickoff)
Fall Meeting 2 Nov 5, 11am-3pm OSU KEC 1001 Files, Verson Control, Programming
Fall Meeting 3 Dec 3, 11am-3pm OSU KEC 1001 Frameworks, Testing and CI

2.2 Winter

Lesson Date/Time Location Description

2.3 Spring

Lesson Date/Time Location Description

5

https://goo.gl/maps/KZiKaCoeuru
https://goo.gl/maps/KZiKaCoeuru
https://goo.gl/maps/KZiKaCoeuru

OSU DevOps BootCamp Documentation, Release 0.0.1

6 Chapter 2. Schedule

CHAPTER 3

Donate

We appreciate the help! To donate, go to http://osuosl.org/donate.

3.1 Lesson 0: Start Here

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

7

http://osuosl.org/donate
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/start-here.html
http://slides.osuosl.org/devopsbootcamp/start-here.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

3.1.1 About the Program

DevOps

DevOps is a field which takes skills from Software Development and Operations Engineering to create
and run applications more effectively.

TLDR: Development + Operations == Better Services

What DevOps BootCamp (DOBC) is

TLDR: Couch to DevOps in 1 school year

DOBC is a free education program offering:

• Mentors teaching DevOps related tools and concepts.

• A challenge for anybody willing to put in the effort.

• One-on-one Apprenticeship.

• Hands-on training and lectures

• Free and Open Source course materials!

What DOBC is not

DevOps BootCamp is not:

8 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

• A for-credit OSU class

• A Student job

• Easy

Why DOBC Exists

DOBC was created because the OSU OSL:

1. Merged with the school of EECS.

2. Wanted to help students meet Company demands and expectations of recent graduates.

3. Needed to bridge the “Skills Gap” of the OSU EECS curriculum.

4. Wanted to build a DevOps Learning community.

What You Will do

You will Learn:

• Linux systems

• Networking

• Software development

• Tools and why they matter

You will build:

• Functioning applications on the cloud

• Cloud infrastructures

Who Teaches DOBC

The teachers of DOBC include:

• OSL Students

• OSL Faculty

• Guests from The Industry

• You!

The ‘Agreement’

You get out what you put in. DOBC is not meant to be easy. Stick with it, persistence is rewarded.

Student Benefits: A free education on industry topics, tools, and concepts

Student Responsibilities: Show up if you can, keep up if you cannot, put forth effort, and don’t forget to have fun.

Give us feedback.

• There will be a survey you, should take it.

• Honesty is the best policy.

3.1. Lesson 0: Start Here 9

OSU DevOps BootCamp Documentation, Release 0.0.1

3.1.2 Getting Involved

Where To Ask Questions

• Internet Relay Chat

• Mailing lists

• During Lecture and Hand-on Lessons

• More on the About page...

How To Ask Questions

• Always be respectful to those helping you.

• Stay calm and articulate.

• Explain you are trying to achieve and be thorough.

3.1.3 The OSU Open Source Lab is Hiring

For more information check the OSL Hiring Page regularly.

3.2 Lesson 1: First Steps

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.2.1 Vocabulary

A 10,000ft view of the world

General Topics:

• Software: A program that runs on a computer.

• Operating System: Computer software that manages other software.

10 Chapter 3. Donate

http://osuosl.org/about/employment
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/first-steps.html
http://slides.osuosl.org/devopsbootcamp/first-steps.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

• GNU/Linux: A free Operating System.

• Computer Security: Like physical security but harder to solve with a baseball bat.

• Virtual Machine: A computer emulated in software.

Development:

• Version Control: A way to track changes and contributions to a project.

• Continuous Integration: Releasing updates continuously.

Buzzwords:

• FOSS: Free (and Libre) Open Source Software. Free as in Speech, not Free as in Pizza (but that too
usually).

• ‘The Cloud’: Computers somewhere else.

• Containers: Not virtual machines, but basically virtual machines.

TODO: What Vocabulary Do You Know?

What other vocabulary can you think of related to DevOps?

What about Silicon Valley, Programming, System Administration, etc?

Note: This is a TODO. It’s basically an exercise or activity but with a cheeky name. Try them out if you don’t feel
confident in a topic.

3.2.2 Notation

• Variable (use whatever word you like here e.g., foo, bar, baz)

– $ONE_VARIABLE_NOTATION

– <another notation for variables>

• Literal (copy this exactly)

– copy_me_exactly

• Comments (parts of the code just for humans)

– this_is(code) # everything after the octothorp is a comment!

– other_code(line) // This can also be a comment. It depends on the
langauge!

• Code-block:

#! /usr/bin/env python
This is a code block.
Most of the time you can copy this code and run it exactly as is.
It should be clear Where it ’goes’ and how to run it based on context.
print(’Hello world!’)

$ echo Hello World # Copy the text after ‘$‘ into your termianal and press enter.

3.2. Lesson 1: First Steps 11

OSU DevOps BootCamp Documentation, Release 0.0.1

TODO: Reading Examples

Trick question: how would you read this

#!/bin/python
dogs = [’$BREED_ONE’, ’$BREED_TWO’, ’$BREED_THREE’]
for breed in dogs:

print(breed)

Answer: Reading Examples

Replace the $BREED_N with actual dog breeds.

#!/bin/python
dogs = [’corgie’, ’pug’, ’french bulldog’]
for breed in dogs:

print(breed)

3.2.3 Getting Setup on Linux

Lecture Setup

1. Get login credentials from your lecturer.

• You will be provided a username, password, host, and port.

12 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Linux/Mac:

2. Open a terminal and verify you have ssh installed by entering the command ssh --version.

3. Run ssh -p <port> <username>@<host> and enter the password when prompted (it will hide
your password in the terminal).

Windows:

2. Install an SSH Client (install Putty)

3. Log into your remote Linux environment using the credentials given to you.

(a) Under Host Name (or IP address) enter <user>@<host>, under Port enter <port>.

(b) You will be prompted for your password in new window, it will hide the password as you type it.

Home Setup

We suggest you install Vagrant, a tool which makes it easy to run and acquire Virtual Machines.

You may also need to install VirtualBox, a tool necessary for Vagrant to function.

TODO: Change Your Password!

Challenge Change your password on your Linux machine.

$ passwd
Changing password for user <user>.
Changing password for <user>.
(current) UNIX password: # Enter old password, hidden
New password: # Enter new password, also hidden
Retype new password:
passwd: all authentication tokens updated successfully.

Don’t forget: when you login next time, use the new password you just set.

3.2.4 Further Reading

• More information on Virtual Machines.

• Install Putty if you want to access a remote Linux box.

• Install Vagrant if you want to run a local Linux Virtual machine.

• Install VirtualBox in addition to Vagrant for local virtual machines.

3.2. Lesson 1: First Steps 13

http://www.putty.org/
https://www.vagrantup.com/docs/installation/
https://en.wikipedia.org/wiki/Virtual_machine
https://www.virtualbox.org/
https://www.vagrantup.com/
https://en.wikipedia.org/wiki/Virtual_machine
http://www.putty.org/
https://www.vagrantup.com/docs/installation/
https://www.virtualbox.org/

OSU DevOps BootCamp Documentation, Release 0.0.1

3.3 Lesson 2: Operating Systems

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.3.1 What an Operating System is

14 Chapter 3. Donate

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/operating-systems.html
http://slides.osuosl.org/devopsbootcamp/operating-systems.html
https://goo.gl/forms/RyVZkJnownLKu8VI3
https://en.wikipedia.org/wiki/File:Operating_system_placement.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

3.3.2 Anatomy of an OS

• User Interface: What you interact with. Window Managers for instance.

• Application Layer: What developers use to make software run.

• Kernel: The Core of the OS. Makes communication between hardware and applications sane.

• Hardware: What does the actual computations. The thing your keyboard is plugged into.

3.3.3 Types of Operating Systems

3.3.4 Popular Operating Systems

• UNIX

– Linux

* Android

* Debian

* RHEL

– MacOS / Darwin

– FreeBSD

• Windows

3.3.5 GNU/Linux

Welcome to the Family

3.3. Lesson 2: Operating Systems 15

https://commons.wikimedia.org/wiki/File:Kernel_Layout.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

3.3.6 Flavors of Linux

• Debian

– Ubuntu

* LinuxMint

• RedHat

– RHEL

– Fedora

– Centos

• Gentoo

– ChromeOS

• Slackware

• ArchLinux

3.3.7 TODO: Pop Quiz

1. What are some different types of Operating Systems?

16 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

2. What constitutes a ‘Distribution’ of Linux?

3. How is Linux different from Windows? OSX?

4. How is Debian different from Gentoo?

3.3.8 Further Reading

OSU Courses:

CS 344: Operating Systems I

• Required course for all CS Students at OSU.

• Covers fundamentals of low-level programming concepts.

– Multi-threaded programming

– Read / Write operations

– Socket programming

CS 444: Operating Systems II

• Required course for all CS Students at OSU.

• Covers kernel hacking and low-level OS design.

– IO / Process scheduling

– Building kernel modules

– Memory management

Free Online Resources: OSDev.org is a wiki dedicated to helping people develop their own operating systems. It’s
a big leap from this lesson, but great if you’re interested in learning the nitty-gritty.

Operating Systems Design and Implementation by Andrew S. Tanenbaum is a classsic in the world of OS
Development. It’s also a big leap, but can teach you more about how Operating Systems work than you ever
thought there was to know.

3.4 Lesson 3: Shell Navigation

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.4.1 The Shell

A shell is a text-based user-interface for a computer.

3.4. Lesson 3: Shell Navigation 17

http://wiki.osdev.org/Main_Page
https://amzn.com/0136386776
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/shell-navigation-os.html
http://slides.osuosl.org/devopsbootcamp/shell-navigation-os.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

Shell Examples

sh Required by all POSIX Operating Systems.

bash Default on most GNU/Linux-based Operating Systems.

csh Default shell on most BSD (Unix) based Operating Systems

fish Useful but not sh compliant shell.

zsh The hip new shell on the block.

3.4.2 Navigation Concepts

3.4.3 Basic Shell Commands

$ pwd # Prints the current working directory (where you are)
$ ls # Prints the contents of the current working directory
$ cd <path/to/other/directory> # Navigates to a new directory.
$ echo "some thing $AND_VARS" # Prints a string to the screen.
$ cat foo.txt bax.txt # Prints the contents of a file(s) to the screen.
$ grep foo file.txt # Searches ‘file.txt‘ for the string ‘foo‘
$ less file.txt # Prints a file to the screen so you can arrow up/down.
$ env # Prints environment variables to the screen.
$ whoami # Prints out current user
$ help # When in doubt, always type help.

3.4.4 Shell Scripts

about_me.sh

#!/bin/sh
if [$(whoami) == "root"]; then

echo "You’re root!"
else

echo "Your username is $(whoami)"
echo "Your home-directory is $HOME"
echo "Your current directory is $PWD"
echo "Your computer’s host-name is $HOSTNAME"

fi

Invoke with:

18 Chapter 3. Donate

https://en.wikipedia.org/wiki/File:Cypraea-moneta-001.jpg

OSU DevOps BootCamp Documentation, Release 0.0.1

$ chmod +x about_me.sh # Tell Linux that this can be run as a program.
$./about_me.sh # Invoke the script.

3.4.5 File Paths

. The current directory.

.. The parent directory.

~ Alias for your home directory.

/ Separates directories: one_dir/another_dir/last_dir

Alone, or at the start of a path, it is the root directory.

$ tree -F
.
|-- bar/
| |-- one
| ‘-- two
|-- baz/
‘-- foo/

‘-- a/
‘-- b/

5 directories, 2 files

3.4.6 Special Characters

Wildcard (*) Used as a stand-in for any character(s).

Example: cat *.log cats all files in the current working directory ending in .log.

End of line ($) Used to specify the end of a regex. We’ll cover what regex is later.

Curl braces ({ }) Used to specify a set.

Example: ls {foo,bar,baz}ley-thing expands to ls fooley-thing barley-thing
bazley-thing

Escape special characters (treat them as normal characters) with the escape character (\).

3.4.7 Type Less, Tab More

Pressing the tab key auto-completes a command, file-path, or argument in your shell.

Pressing tab multiple times completes the command to the best of the shells ability and then lists the possible com-
pletions (if there are any).

$ ls b # <tab>
$ ls ba # <tab>
bar_thing/ baz_thing/
$ ls bar # <tab>
$ ls bar_thing

3.4. Lesson 3: Shell Navigation 19

OSU DevOps BootCamp Documentation, Release 0.0.1

3.4.8 TODO

3.4.9 Further Reading

BASH Programming - Introduction HOW-TO A free online resoruce of learning bash programming. Covers some
concepts we’ll get to later in DOBC, but a good resoruce to have on hand.

Running rm -rf / on Linux This video demonstrates what happens when you ‘delete your hard-drive’ on Linux. A
fun watch!

3.5 Lesson 4: Users, Groups, Permissions

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.5.1 The User

You... ish.

$ whoami # your username
$ who # who is logged in?
$ w # who is here and what are they doing?
$ id # user ID, group ID, and groups you’re in

Sometimes robots are users too: Apache, Mailman, ntp.

What a User has

/etc/passwd:

root:x:0:0:root:/root:/bin/bash
username:password:uid:gid:uid info:home directory:shell

What Users Can Do

• Change Passwords with the passwd command.

• Act as Another user with su.

$ su $USER # become user, with THEIR password
$ su # become root, with root’s password
$ sudo su - # use your password instead of root’s
$ sudo su $USER # become $USER with your password

• Act as themselves.

– ls -l to see file permissions.

– Check the file’s group and user.

– Check the file’s read, write, and execute bits.

20 Chapter 3. Donate

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
https://youtu.be/D4fzInlyYQo
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/users-groups-permissions.html
http://slides.osuosl.org/devopsbootcamp/users-groups-permissions.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

3.5.2 Managing Groups and Users

$ cat /etc/passwd
username:x:UID:GID:GECOS:homedir:shell

$ useradd <user_name> # vs adduser, the friendly Ubuntu version
$ userdel <user_name>
$ passwd

$ groupadd
$ usermod
$ groupmod
$ cat /etc/group

root:x:0:

3.5.3 Examples of Non-Human Users

• mailman: For the mailing list program.

• apache: For the HTTP Server.

• postfix: For the other mail program.

3.5. Lesson 4: Users, Groups, Permissions 21

https://www.xkcd.com/838/
https://www.xkcd.com/215/

OSU DevOps BootCamp Documentation, Release 0.0.1

3.5.4 Root and Sudo

Root: Basically god on Linux.

[foo@compe ~]$ yum install httpd # Runs command as ‘foo‘ user
Loaded plugins: fastestmirror, ovl
ovl: Error while doing RPMdb copy-up:
[Errno 13] Permission denied: ’/var/lib/rpm/__db.002’
You need to be root to perform this command.
[foo@compe ~]$ sudo yum install httpd # Runs command as ‘root‘ user.
password:
Loaded plugins: fastestmirror, ovl
[... installs correctly ...]

Warning: Acting as root is dangerous! You can accidentally delete your filesystem, forcing you to completley
re-install your OS! Type carefully.

3.5.5 TODO

• Create a user on your system for yourself, with your preferred username.

• Give your user sudo powers.

• Use su to get into your user account.

• Change your password.

• Create a directory called bootcamp in your home directory.

• Create a group called devops.

22 Chapter 3. Donate

https://xkcd.com/149/

OSU DevOps BootCamp Documentation, Release 0.0.1

3.5.6 Further Reading

• Understanding Linux File Permissions

3.6 Lesson 5: Files

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.6.1 About Files

Everything in Linux is a file... except the things that aren’t.

Files have:

• Owners

• Permissions (what different people can do with it)

• An inode (a low-level description of the file)

• Size

• Filename

$ ls -il
total 8
2884381 drwxrwxr-x 5 test test 4096 Nov 6 11:46 Documents
2629156 -rw-rw-r-- 1 test test 0 Nov 13 14:09 file.txt
2884382 drwxrwxr-x 2 test test 4096 Nov 6 13:22 Pictures

3.6.2 Everything is a file!?

Yes. Except the things that aren’t..

int read_medical_device_data(int device_file_pointer) {
// Open a connection to the device
int * stream = open(device_file_pointer);
// Write the stream of data to the screen
write(STDOUT, stream);
// Do some other stuff with that data
// Close the data stream
close(stream);

return EXIT_SUCCESS;
}

3.6.3 File Extensions

.jpg, .txt, .py

3.6. Lesson 5: Files 23

https://www.linux.com/learn/understanding-linux-file-permissions
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/files.html
http://slides.osuosl.org/devopsbootcamp/files.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

Not necessary, more of a recommendation.

$ ls
some_text_file squirrel

$ file some_text_file
some_text_file: ASCII text

$ file squirrel
squirrel: JPEG image data, JFIF standard 1.01

3.6.4 Hidden Files

Any file starting with . is called a hidden file and is not listed by default.

Adding the -a flag to ls command includes hidden files in your output.

$ ls
Documents file.txt Pictures

$ ls -a
. .. Documents file.txt .hidden_file Pictures .vimrc

3.6.5 Finding Metadata with ‘ls -l’

$ ls -l
drwxrwxr-x 5 test test 4096 Nov 6 11:46 Documents
-rw-rw-r-- 1 test test 0 Nov 13 14:09 file.txt
drwxrwxr-x 2 test test 4096 Nov 6 13:22 Pictures
---------- ------- ------- -------- ------------ -------------

| | | | | |
| | | | | File Name
| | | | +--- Modification Time
| | | +------------- Size (in bytes)
| | +----------------------- Group
| +-------------------------------- Owner
+-- File Permissions

3.6.6 Editing Metadata

$ chown root myfile
Change the owner of myfile to "root".

$ chown root:staff myfile
Change the owner of myfile to "root" and group to "staff".

$ chown -hR root /mydir
Change the owner of /mydir and subfiles to "root".

$ chgrp -R devops /home/$yourusername/bootcamp
Make the group devops own the bootcamp dir

24 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

3.6.7 chmod and Octal Permissions

+-----+--------+-------+
| rwx | Binary | Octal |
+-----+--------+-------+
---	000	0
--x	001	1
-w-	010	2
-wx	011	3
r--	100	4
r-x	101	5
rw-	110	6
rwx	111	7
+-----+--------+-------+

• u, g, o for user, group, other

• -, +, = for remove, add, set

• r, w, x for read, write, execute

3.6.8 Executing a File?

For instance:

$ ls -alh my-script
-r-xr-xr-x 1 username username 1.9K Sep 27 09:44 my-script

$ cat my-script
#!/bin/bash
The above line tells Linux how to invoke the script on my behalf.
echo ’This is a script being run without using bash!’

$./my-script # my-script is invoked just like a compiled binary!
This is a script being run without using bash!

3.6.9 Types of Files

• - is a normal file

• d is a directory

• b is a block device

• l is a symlink

3.6.10 Directories

Directories are also files!

• +r allows you to read the contents of the directory.

• +w allows you to add files to the directory.

• +x allows you to use the directory at all.

3.6. Lesson 5: Files 25

OSU DevOps BootCamp Documentation, Release 0.0.1

$ ls -alh | grep foobarbaz
drw-rw-rw- 2 voigte voigte 4.0K Sep 29 10:47 foobarbaz

$ ls -alh foobarbaz # Below is the literal output, not psuedo-output
ls: cannot access foobarbaz/.: Permission denied
ls: cannot access foobarbaz/..: Permission denied
total 0
d????????? ? ? ? ? ? .
d????????? ? ? ? ? ? ..

3.6.11 TODO: Messing with Files

$ touch foo # create empty file called foo

• Create an empty file in /home/$yourusername/bootcamp.

• Who can do what to the file?

• Change the group to devops.

• Make a file called allperms and give user, group, and world +rwx.

• Make more files and practice changing their permissions.

3.6.12 Further Reading

• Permission Mishaps

• Access the Linux kernel using the /proc filesytem

3.7 Lesson 6: Packages, Software, Libraries

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.7.1 Software

Everything that isn’t hardware.

• Code that is run on a Computer.

• Binaries.

• Scripts.

3.7.2 Libraries

• Often used to make development easier.

• Rarely run on it’s own.

26 Chapter 3. Donate

http://serverfault.com/questions/93752/linux-permission-when-things-go-wrong-mishaps-gotchas-for-newbies/93759
http://www.ibm.com/developerworks/library/l-proc/index.html
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/packages-software-libraries.html
http://slides.osuosl.org/devopsbootcamp/packages-software-libraries.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

• Shared code.

3.7.3 Package Management

• Automagically manage software and libraries on your system.

• Examples:

– Android Play Store

– Apple App store

– Steam

3.7.4 Core Package Management Functionality

TLDR: To take care of installation, removal, and updates of software.

3.7.5 Popular Linux System Package Managers

Popular Linux Package Managers:

Apt (.deb, dpkg) Used by default on the Debian, Ubuntu, Linux Mint operating systems.

Yum (.rpm, rpm) Used by default on the RedHat, CentOS, Fedora operating systems.

3.7.6 Programming Langauge Package Managers

Examples:

• Python: pip

• Ruby: gem, rubygems

• Haskell: cabal

• NodeJS: npm

• ... and so on forever ...

3.7.7 Other Package Managers

Portage The Source-based package manager for Gentoo.

Yaourt An Arch User Repository wrapper for Pacman, the Arch Linux Package manager.

Nix A ‘Fully Functional/Transactional’ package manager.

Brew An Open Soruce package manager for OSX.

Chocolatey A package manager for Windows.

3.7. Lesson 6: Packages, Software, Libraries 27

OSU DevOps BootCamp Documentation, Release 0.0.1

3.7.8 Installation from Soruce

How to install a package from source:

Using grep as an example:

$ wget http://mirrors.kernel.org/gnu/grep/grep-2.25.tar.xz
$ tar -Jxvf grep-2.25.tar.xz
$ cd grep-2.25
$./configure --prefix=$HOME/bin/
$ make
$ make install

3.7.9 TODO: Install sl

• Install the git, gcc, make, ncurses-bin, ncurses-base, libncurses5-dev, and
libncurses5-dev packages via package manager.

$ sudo apt install git gcc make ncurses-bin ncurses-base libncurses5-dev libncurses5-dev
[...]

• Install sl from source into the directory ~/bin/.

$ git clone https://github.com/mtoyoda/sl.git
[...]
$ cd sl
$ make
gcc -O -o sl sl.c -lncurses
$ mkdir ~/bin
$ ln sl ~/bin/
$ echo "export PATH=$PATH:$HOME/bin" >> ~/.bashrc
$ source ~/.bashrc
$ whereis sl
sl: /home/username/bin/sl
$ sl

3.7.10 Further Reading

• More about APT

3.8 Lesson 7: Questions, Answers, Docs

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.8.1 When in doubt

$ <program> --help
$ <program> -h

28 Chapter 3. Donate

https://debian-handbook.info/browse/stable/sect.apt-get.html
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/questions-answers-documentation.html
http://slides.osuosl.org/devopsbootcamp/questions-answers-documentation.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

Most programs allow you to pass a help flag which will print out basic usage. This is useful as a quick reference for
how to use the program.

3.8.2 Man Pages

$ man <program>

• Type / and then enter a keyword to see where that word appears.

• Press n to go to the next (and p to go to the previous) occurrence of that word.

$ man man

MAN(1) Manual pager utils MAN(1)

NAME
man - an interface to the on-line reference manuals

SYNOPSIS
man [-C file] [-d] [-D] [--warnings[=warnings]] [-R encoding] [-L
locale] [-m system[,...]] [-M path] [-S list] [-e extension] [-i|-I]
[...]

DESCRIPTION
man is the system’s manual pager. Each page argument given to man is
normally the name of a program, utility or function. The manual page
[...]

Anatomy of a Man Page

Most Man Pages include:

• Name

• Flags

• Description

• Basic Usage

• Authors

If you’re lucky they will also include:

• A Good description

• Advanced Usage.

• Examples

• History

• See Also

Sections of Man

1. Executable programs or shell commands

2. System calls (function provided by the kernel)

3.8. Lesson 7: Questions, Answers, Docs 29

OSU DevOps BootCamp Documentation, Release 0.0.1

3. Library calls (functions provided from within libraries)

4. Special files (usually found in /dev)

5. Files formats and conventions eg /etc/passwd

6. Games

7. Miscellaneous (including macro packages and conventions), e.g., man(7), groff(7)

8. System administration commands (usually only for root)

9. Kernel routines [Non standard]

Note: Some distros use info instead of man. To learn more about the info command, see Further Reading.

3.8.3 Project Docs

Where to look:

• http://docs.some-random-project.io/

• http://some-random-project.io/docs/

• http://organization.com/some-random-project/

3.8.4 Questions and Answers

• Stack Overflow

• Forums

• Mailing Lists

• Blogs

30 Chapter 3. Donate

https://xkcd.com/979/

OSU DevOps BootCamp Documentation, Release 0.0.1

3.8.5 How to Talk to People

• Chatrooms

• Meetups

• Face to Face (!?)

3.8.6 IRC

Quick Facts:

• Internet Relay Chat (IRC)

• Very old (RFC 1459, May 1993)

• Works on everything (Terminal, GUI, Web-browser, etc)

• The people you want to listen to are there

• Oregon State ran one of the first servers ever!

TODO Getting on IRC

To get on IRC, Use irssi or weechat in screen:

This step is optional, but persistent IRC is cool
$ ssh <username>@<a remote linux server>

start screen with the name ’irc’
$ screen -S irc

start your client in the 0th window of the screen session
$ irssi
or
$ weechat-curses

exit irc screen with CTRL+a, CTRL+d
exit ssh session with CTRL+d or ’exit’
to get back to irc:
$ ssh <username>@<preferred shell host>
$ screen -dr IRC

Connecting and Setup

In the IRC client run these commands

/connect irc.freenode.net

/nick <myawesomenickname>
/msg nickserv register <password> <email>

/nick <myawesomenickname>
/msg nickserv identify <password>

/join #devopsbootcamp

3.8. Lesson 7: Questions, Answers, Docs 31

OSU DevOps BootCamp Documentation, Release 0.0.1

Commands and Tips

• /list: Reports all the channels on a server.

• /topic: Reports current channel topic.

• /names: Reports nicks of users in channel.

• /join <channel>: Join a new channel.

• /whois <nick>: Learn about a person.

• /msg: Directly message an individual.

• /help <command>

• Tab-completion works with nicks

• You get a hi-light when your name is said.

• Symbols (@, +) are not part of names, show status in channel.

• chanserv and nickserv are robots.

– /msg nickserv help to get nick help.

– /msg chanserv help to get channel help.

IRC Jargon

• ping/pong: “I would like to tell you something”/”I’m here, tell it to me.”

• tail: “~”

• hat: “@” Denotes admin status in a channel.

• nick: Your name.

• netsplit: When the IRC servers lose connection with eachother.

32 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

• kick/ban/k-line: GTFO

Asking for Help

It’s okay to ask for help. Here are some things to keep in mind:

1. Ask yourself what should be happening?

2. Ask yourself what is actually happening?

3. Google the problem(s).

4. Skim the manuals of each component.

5. Identify a friend, mentor, or IRC channel who could help.

6. When they’re not busy, give them a quick synopsis of points 1 and 2, mentioning what possibilities you’ve ruled
out by doing steps 3 and 4.

Contributions = expertise + time

3.8.7 Further Reading

• About info: info is an alternative to man that some distros use instead.

3.9 Lesson 8: Version Control

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.9. Lesson 8: Version Control 33

http://www.computerhope.com/unix/info.htm
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/version-control.html
http://slides.osuosl.org/devopsbootcamp/version-control.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

3.9.1 Text Editor: Nano

• User types like normal.

• Arrow keys used to to navigate the cursor.

• ^ + <key> Commands (control + key)

3.9.2 Version Control Systems

VCS is how one tracks changes, modifications, and updates to source files over time. Creating a history of changes
for a project over time.

Used for:

• Documentation

• Code

• Configuration

• Collaboration

Other Names Include:

• Source Control Management (SCM)

• Version Control Software

• Revision Control Software

What VCS Solves

Version control solves a lot of problems:

34 Chapter 3. Donate

http://www.phdcomics.com/comics/archive.php?comicid=1531

OSU DevOps BootCamp Documentation, Release 0.0.1

• I have changes I want to integrate (merge) into the main project.

• I want to track the state of this project over time.

• I want to make some changes without possibly breaking what I have.

• ... and much more.

Principles of VCS

Types of VCS

3.9.3 Git

Git is a Free and Open Source distributed version control system designed to handle everything from small
to very large projects with speed and efficiency. (https://git-scm.com)

Setting up Git

$ sudo yum install git
$ git config --global user.name "My Name"
$ git config --global user.email "myself@gmail.com"
$ git config --global core.editor "nano"

TODO: Use Git Locally

Create a project with Git:

$ mkdir my-project
$ cd my-project # Always run ‘git init‘ inside of a project folder!
$ git init # Never inside of your home directory.

Add and commit a file to your project with Git:

$ touch newfile.txt
$ git add newfile.txt
$ git commit # Edit message in Nano, save the file, exit to commit.

3.9. Lesson 8: Version Control 35

https://git-scm.com
https://commons.wikimedia.org/wiki/File:Git-logo.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

To see which files are staged, unstaged, or untracked:

$ git status

To look through your repository history:

$ git log

To create and checkout a branch:

$ git branch # Shows your branches and current branch

* master
$ git checkout -b <new-branch> # Switches to new branch ‘<branch name>‘
$ git branch
master

* new-branch
$ git checkout master # Switches to existing branch ‘<branch name>‘

TODO: Working With a Git Repository

• Checkout a new feature branch on your repository.

• Create/Edit files on the new branch.

• Create a diff between the two.

• Locally merge the changes from your new branch into Master.

36 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

3.9.4 What not to do with Git

3.9.5 Workflow(s)

Everybody uses VCS differently. Choose the workflow that works best for everybody involved.

3.9.6 Centralizing Git

Gitlab Open Source, free to run, feature rich.

Github Very popular. Not Open Source but free for Open Source projects.

Bitbucket Also popular, similar to Github, unlimited free private and public repositories.

Gitolite Bare-bones. Fewer feature than the previous three. Open Source, useful for learning the nitty-gritty Git really
works.

Cloning a Repository

$ cd /path/to/my/projects
$ git clone <some git url>
$ cd <new repo directory>
$ ls

3.9. Lesson 8: Version Control 37

http://nvie.com/posts/a-successful-git-branching-model/

OSU DevOps BootCamp Documentation, Release 0.0.1

TODO: Cloning Exercise

$ git clone https://github.com/DevOpsBootcamp/tinsy-flask-app.git

See http://git.io/vcVmB for more details about the tinsy-flask-app repository.

$ cd tiny-flask-app
$ virtualenv venv
$ pip install -r requirements.txt
$ python script.py

Now if you go to <your ip address>:<http port> in your web-browser to see a live version of the app!

3.9.7 Further Reading

The Online Git Docs This is a portal to all of the official docs on git-scm.com. It includes everything from Getting
Started to Git Internals. Check it out!

Git workflow tutorial This is the tutorial provided on https://git-scm.com/about/distributed. It is a good high-level
overview of some common git workflows.

A successful Git branching model This blogpost describes a git workflow (git-flow) that the Open Source Lab bases
their workflow on.

3.10 Lesson 9: Programming

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.10.1 Paradigms

Programming is a big topic.

Note: Pseudo-code

function f(x):
This line is a comment, not run by the computer.
Comments are only for human eyes.
if x is less than than 5

print "x is less than 5"
else if x is less than than 10

print "x is greater than five and less than 10"
else

print "x is greater than 10"

38 Chapter 3. Donate

http://git.io/vcVmB
https://git-scm.com/doc
https://git-scm.com
https://git-scm.com/about/distributed
https://git-scm.com/about/distributed
http://nvie.com/posts/a-successful-git-branching-model/
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/programming.html
http://slides.osuosl.org/devopsbootcamp/programming.html
https://goo.gl/forms/RyVZkJnownLKu8VI3
https://www.tenor.co/view/big-huge-large-billnye-gif-4824554

OSU DevOps BootCamp Documentation, Release 0.0.1

Variables & Constants

>>> x = "value"
>>> print(x)
value
>>> x = "different value"
>>> print(x)
different value

Data Types

Data types dictate how a piece of data should be handled within a program.

Flow Control

Flow Control allows you to execute code only if certain conditions are met.

Conditionals: If / Else If / Else Conditionals are used to tell the program when to execute commands.

In pseudocode, they usually look something like

if some conditional statement is true
do something

else if some other conditional
do something else

else
do a final thing

Loops: For / While / Do While Loops are used to do multiple things, usually an indefinite number of things.

For instance:

for every element, let’s call it "foo", in a list "my_list"
if foo is greater than five

print(foo)
else

print(foo + " is too small")

While loops execute indefinitely (while something continues to be true).

For loops iterate over a list (array) of elements or to a specific number.

Input & Output

>>> user_input = get_input("Where would you like to go today? ")
>>> -> Where would you like to go today? Nebraska
>>> print(user_input)
>>> -> nebraska
>>> print(reverse(nebraska))
>>> -> aksarben

Functions

3.10. Lesson 9: Programming 39

OSU DevOps BootCamp Documentation, Release 0.0.1

function read_file(x):
Also check that it exists! How convenient!
if file_exists(x)

v = read_file_to_string(x)
return v

else
print("file does not exist")
return Null

Structs

struct dog {
breed: String
height: Float
color: String
age: Integer

}

spot = struct dog # Create a new variable of type ‘struct dog‘
spot.breed = "corgie" # Assign each member a variable.
spot.height = 1.5
spot.color = "Blond"
spot.age = 1
print(spot.breed, spot.height, spot.color, spot.age)

Objects

class chair():
function init(material):

self.material = material

function rock():
print("The ", self.material, " chair rocks slowly.")

>>> my_chair = chair.init("plastic")
>>> my_chair.rock()
>>> -> The plastic chair rocks slowly.

Libraries

import math_lib

print(math_lib.pi, math_lib.pow(2, 5), math_lib.tan(79.3))
prints out "3.14 32 .951"

3.10.2 TODO: Write Pseudo-Code

Write pseudo-code to do the following tasks:

• Count to 20 (hint: for loop).

• Get user input and print it.

40 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

• Generate prime numbers.

Hints:

• Break the problem down to the simplest steps.

• Don’t worry about the details.

• This is pseudo-code! Get creative.

3.10.3 Python

$ sudo <apt or yum> install python

Python Datatypes

• You don’t need to declare the type of your variables, Python will assume the type of your variable and type it
for you.

• Python is a duckly-typed language. If it walks like a duck and quacks like a duck, then Python treats it like a
duck. As long as an object implements the proper interfaces, it can act like any type it wants.

3.10. Lesson 9: Programming 41

http://python.org

OSU DevOps BootCamp Documentation, Release 0.0.1

Type Example
boolean True
integer 7
long 18,446,744,073,709,551,615
float 12.4
string "Hello World!"
list [’first’, ’second’]
dict (map) {’key1’: ’value’, ’key2’, ’value2’}
tuple (’value’,’paired value’)
object anObjects.variable == <value>
None

Python Variables

This is a comment
boolean = True # boolean
name = "Lucy" # string
age = 20 # integer
pi = 3.14159 # float
alphabet = [’a’, ’b’, ’c’]
dictionary = {"pi":3.14159, "sqrt 1":1}
winter = (’December’, ’January’, ’February’, ’March’)

print(name + " is " + str(age+1) + " this " winter[3])

REPL: Try it out

Open a REPL (Read Evaluate Print Loop):

$ python
>>> print("I’m in a REPL!")
>>> name = # <Your name>
>>> age = # <Your age>
>>> print(name + " is " + str(age))
>>> # We need to convert age from int to string so it can print!

Python Control Flow

if name == "Lucy":
for month in winter:

print name + " doesn’t like " + month
else:

print "My name isn’t Lucy!"

Python Functions

def myfunction(arg1, arg2):
return arg1 + arg2

print myfunction(1, 5)

42 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Python Libraries

There are a few ways to use other code in your code:

from math import pi
x = pi

from math import *
x = pi

There are hundreds of Python libraries. If you’re trying to do something and think “This has probably been solved...”,
Google it!

Some libraries to know:

• sys

• os

• dateutil

• future

• And more

3.10. Lesson 9: Programming 43

https://wiki.python.org/moin/UsefulModules

OSU DevOps BootCamp Documentation, Release 0.0.1

Python (Virtual) Environments

$ sudo apt-get install python-virtualenv
$ sudo yum install

In each project you work on, you’ll want to run
$ virtualenv venv
$ source venv/bin/activate
(venv)$ pip install <package>
(venv)$ deactivate

3.10.4 TODO: Practicing Python

Formalize the last TODO by writing them in Python.

Prove the program works by running the code!

3.10.5 Further Reading

Python on Learnpython.org The Python programming language’s website offers some good (free) tutorials and ref-
erence documentation.

Python on Codecademy Codecademy is a great resource for learning many programming languages and offers a
good (free) beginner’s guide to Python.

CS 160, 161, 162 These OSU courses focus on programming fundamentals covered in this lesson in greater detail.
Python is used in CS 160 and C/C++ is used in CS 161 and CS 162.

44 Chapter 3. Donate

http://www.learnpython.org/
https://www.codecademy.com/learn/python
http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=160
http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=161
http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=162

OSU DevOps BootCamp Documentation, Release 0.0.1

3.11 Lesson 10: Frameworks

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.11.1 Frameworks

• Web-development frameworks.

• Game-development frameworks.

The job of a framework

To take care of the boring stuff.

Why and When to use a Framework

Use a framework if you are making a cookie cutter application.

If a framework exists for what you’re doing, consider using it.

Types of Frameworks

• Testing Frameworks

• Web-app Frameworks

• Game Frameworks

3.11.2 Web Frameworks

Static vs Dynamic Sites

There are two types of websites: Static and Dynamic.

Static Site Rarely changes, looks the same for all visitors (Blog, News, Document)

Dynamic Site Changes based on who you are and what you do. (Search Engine, Login)

Popular Web Frameworks

Python

Django Offers many feature out of the box: Admin page, easy database management, simple templating, con-
venient URL routing. Well documented too.

Flask Sparsely featured, offers very little out of the box and lets you build up the features you need. Well
supported with community libraries and add-ons.

Ruby

3.11. Lesson 10: Frameworks 45

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/frameworks.html
http://slides.osuosl.org/devopsbootcamp/frameworks.html
https://goo.gl/forms/RyVZkJnownLKu8VI3
https://www.djangoproject.com/
http://flask.pocoo.org/

OSU DevOps BootCamp Documentation, Release 0.0.1

Rails Arguably the most popular web-framework out there. Similar to Django in it’s features out of the box.

Sinatra Analogous to Flask on the Python side, very simple and easy to start with, encourages building up the
features you need.

Node.js

ExpressJS A bare-bones NodeJS application, similar again to Flask.

Note: Model, View, Controller

46 Chapter 3. Donate

http://rubyonrails.org/
http://www.sinatrarb.com/
http://expressjs.com/
https://commons.wikimedia.org/wiki/File:MVC-Process.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

URL Routing

app.route(’/delete’, delete_account)

def delete_account():
if username was passed in the query parameters

and password was passed in the query parameters
and the user is in the database
and passed password is correct

database.remove_user(username)
return success

else
return failure

Templating Engines (mad-libs!)

data = {"animal": "Cat", "number": 5}
template.render("You have {{ number }} {{ animal}}s! That’s crazy.", data)

You have 5 cats! That’s crazy.

TODO: Dynamic Website

Read the documentation on Flask, a simple Python Web-Framework and build a simple “Display the Time in each
Timezone” Application.

When a user goes to our website they will see the server’s time and when they go to app-url/<timezone code>
they will see the timezone in that area of the world.(http://flask.pocoo.org)

3.11.3 Further Reading

3.12 Lesson 11: Testing

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.12.1 Testing

def add_double(x, y):
return 2*(x+y)

def test_add_double():
expect(add_double(1, 2) == 6)

3.12. Lesson 11: Testing 47

http://flask.pocoo.org/
http://flask.pocoo.org
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/testing.html
http://slides.osuosl.org/devopsbootcamp/testing.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

3.12.2 Why Testing Matters

3.12.3 Structure of a Test

Most test are consist of the same general structure:

3.12.4 Types of Testing

3.12.5 Concept: Mocking

Simulating behavior external to a program so your tests can run independently of other platforms.

You’re testing your program, not somebody else’s. Mock other people’s stuff, not your own.

3.12.6 Testing Frameworks

$ run tests
Finding tests...
Running tests in tests/foo.ext
Running tests in tests/bar.ext
Running tests in misc/test_baz.ext

48 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Frameworks vs ‘The Hard Way’

While you can write tests the hard way:

var = some_function(x)
if var == expected_output:

continue
else

print("Test X failed!")

$ run test
Test 5 failed!

It’s usually easier to use a framework.

def simple_test():
expect(some_function(x), expected_output)

$ run tests
....x.....
Test 5 failed.
Debug information:
...

Teardown and Setup

Useful for:

• populate a test database

• write and delete files

• or anything you want!

def tests_setup():
connect to database
populate database with test data

def tests_teardown():
delete all data from test database
disconnect from database

def some_test()
setup is called automaically
use data in database
asset something is true
teardown is run automatically

3.12.7 TODO: Using Python’s unittest

3.12.8 Further Reading

CS 362 This OSU Course covers testing very in depth and even covers types of testing including Random testing and
testing analysis.

Python Unittest Documentation A good reference for using Python’s built-in unit-testing module.

3.12. Lesson 11: Testing 49

https://docs.python.org/2/library/unittest.html

OSU DevOps BootCamp Documentation, Release 0.0.1

3.13 Lesson 12: Continuous Integration

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.13.1 Continuous Integration

50 Chapter 3. Donate

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/continuous-integration.html
http://slides.osuosl.org/devopsbootcamp/continuous-integration.html
https://goo.gl/forms/RyVZkJnownLKu8VI3
http://www.agilenutshell.com/continuous_integration

OSU DevOps BootCamp Documentation, Release 0.0.1

3.13.2 Automated Testing

3.13.3 Tool: Travis CI

Runs test suites for:

• C / C++

• Java

• Javascript

• Python

• Ruby

• Many more on the Travis CI docs!

3.13.4 Tool: Jenkins

• Does pretty much anything you can tell a computer to do, automatically.

• Builds and uploads binaries (releases).

• Runs tests.

• Reports build successes/failures.

• Also has plugins!

3.13. Lesson 12: Continuous Integration 51

https://travis-ci.org
https://docs.travis-ci.com/

OSU DevOps BootCamp Documentation, Release 0.0.1

3.13.5 TODO: Setup Travis on a GH Repo

3.13.6 Further Reading

Jenkins Documentation The Jenkins project documentation. If you need a broad overview read the Getting Started
with... docs.

TravisCI Documentation If you end up working on a large project on GitHub you’re going to interface with TravisCI
sooner or later.

CircleCI Documentation CircleCI is a tool we didn’t get to touch on. It is very similar to Travis.

3.14 Lesson 13: Security

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.14.1 Security

se·cu·ri·ty (sikyoorit/) [noun] The state of being free from danger or threat.

The safety of a state or organization against criminal activity such as terrorism, theft, or espionage.

3.14.2 Types of Security

There are three main types of security in computing:

3.14.3 Threat Models

Threat models allow you to focus and limit your security resources on what is necessary instead of what
is possible.

52 Chapter 3. Donate

https://jenkins.io/doc/
https://docs.travis-ci.com/
https://circleci.com/docs/
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/security.html
http://slides.osuosl.org/devopsbootcamp/security.html
https://goo.gl/forms/RyVZkJnownLKu8VI3
https://xkcd.com/416/

OSU DevOps BootCamp Documentation, Release 0.0.1

3.14.4 Authentication, Authorization, Identity

3.14.5 Passwords / Passphrases

Problems with Passwords

• People repeat passwords.

• Many passwords are easy to guess.

• Passwords are hard to remember.

3.14. Lesson 13: Security 53

https://xkcd.com/1121/

OSU DevOps BootCamp Documentation, Release 0.0.1

Solutions for Passwords

Choosing Pass-phrases

Relevant funny bash.org post

3.14.6 Certificates and HTTPS

54 Chapter 3. Donate

http://bash.org/?244321
https://xkcd.com/936/

OSU DevOps BootCamp Documentation, Release 0.0.1

3.14.7 Types of Attacks

Code Injection

Code Injection Attacks

<img src="http://example.com/?action="Delete All Accounts"

3.14. Lesson 13: Security 55

https://xkcd.com/327/

OSU DevOps BootCamp Documentation, Release 0.0.1

Code Injection Defenses

Web Server Attacks

3.14.8 Discovering Vulnerabilites

1. Test and document the bug to verify it exists. If you think you encountered a bug, make sure you can repli-
cate it. If you can’t how can you expect the developers to recreate it?

2. Disclose it privately to those responsible for fixing it. Provide examples – it’s basically a bug report, but
through private channels (not public tracker yet!)

3. Give them time to release a patch before announcing it. Google waits 90 days to announce a bug after in-
forming the developers.

3.14.9 TODO

3.14.10 Further Reading

codebashing.com/sql_demo Try your hand at actual SQL Injection attacks

3.15 Lesson 14: Databases

Homepage Content Slides Video

56 Chapter 3. Donate

http://news.netcraft.com/wp-content/uploads/2014/02/apache-vulns1.png
http://www.codebashing.com/sql_demo
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/databases.html
http://slides.osuosl.org/devopsbootcamp/databases.html

OSU DevOps BootCamp Documentation, Release 0.0.1

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.15.1 Databases

Relating Data

Imagine a kitchen cupboard program that stores food currently in stock, where it is, recipes using it,
expiration dates, etc.

Databases and Structure

Structure SQL databases are based on around Relational Algebra

<Table 1>
+---------------+-----------+-----------+
| <Primary key> | <Field 1> | <Field 2> |
+---------------+-----------+-----------+
| 1 | value | value‘ |
| ... | ... | ... |
+---------------+-----------+-----------+

<Table 2>
+---------------+-----------+--------------------------+
| <Primary key> | <Field 1> | <Foreign key to Table 1> |
+---------------+-----------+--------------------------+
| 1 | val | 7 |
| ... | ... | ... |
+---------------+-----------+--------------------------+

3.15. Lesson 14: Databases 57

https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

Concept: Relational Algebra

3.15.2 When to use a Database

When you have to work with a lot of well structured data.

Databases are useful for two situations:

1. Lots of data.

2. High throughput.

Lots of Data

Concurrent Read/Writes

3.15.3 When not to use a Database

3.15.4 Types of Databases

There are two broad types of databases.

• SQL: Stores data in tables organized by column and field.

• NoSQL: Stores data differently than an SQL database.

• NewSQL: A middle-ground between SQL and NoSQL

58 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

SQL

Examples:

• MySQL/MariaDB

• PostgreSQL

• SQLite

NoSQL

Examples:

• MongoDB

• Apache Casandra

• Dynamo

• Redis

3.15.5 Database Concepts

Schemas

CREATE TABLE nobel (
id int(11)

NOT NULL
AUTO_INCREMENT,

yr int(11),
subject varchar(15),
winner varchar(50)

)
ENGINE = InnoDB;

Migrations

3.15.6 Raw SQL Syntax

SELECT

Example:

SELECT
yr, subject, winner

FROM
nobel

WHERE
yr = 1960 AND subject=’medicine’;

3.15. Lesson 14: Databases 59

OSU DevOps BootCamp Documentation, Release 0.0.1

INSERT

Example:

INSERT INTO
nobel

VALUES
(’2013’,’Literature’,’Herta Müller’);

UPDATE

Example:

UPDATE
nobel

SET
winner=’Andrew Ryan’

WHERE
subject=’Peace’ AND yr=’1951’;

DELETE

Example:

DELETE FROM
nobel

WHERE
yr = 1989 AND subject = ’peace’;

3.15.7 TODO: Crafting Queries!

Craft a query to get the following data out of our Nobel table:

• Who won the prize for Medicine in 1952?

• How many people were awarded the 1903 Nobel in Physics?

• How many prizes were awarded to Linus Pauling?

• How many people have won more than once? (Difficult)

Don’t worry about getting it exactly right! Craft pseudo-SQL!

Answers

SELECT winner FROM nobel
WHERE yr=1952 AND subject=’medicine’; #(Selman A. Wksman)

SELECT * FROM nobel
WHERE yr=1903 AND subject=’physics’; #(3)

SELECT * FROM nobel
WHERE winner=’Linus Pauling’; #(2)

SELECT COUNT(*) FROM nobel

60 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

AS n0 INNER JOIN nobel AS n1 on n0.winner=n1.winner
AND (n0.yr!=n1.1 or n0.subject!=n1.subject); #(16)

3.15.8 TODO: Using a Real Database

Installing MySQL

Install mysql -- hit ’enter’ to name your user root, and then enter
again for password
$ sudo yum install mysql-server

$ sudo service mysqld start # Start the service

$ mysql_secure_installation # Use this to set the root password

There is no current password
Hit ’yes’ or ’y’ for all options
Add a sensible password which you will remember
DO NOT MAKE IT YOUR USUAL PASSWORD.

$ sudo service mysqld status # Make sure service is running

$ mysqladmin -u root -p ping # Ping the database

$ mysqladmin -u root -p create nobel # Create a table for Nobel prizes

Configuration

1. Open and edit /etc/my.cnf.

2. Add default_storage_engine = InnoDB to your file.

Users

Login to the mysql shell with your root user credentials:

$ sudo mysql -p

mysql> CREATE USER ’me’@’localhost’
IDENTIFIED BY ’password’;

mysql> GRANT ALL PRIVILEGES ON nobel.*
TO ’me’@’localhost’
WITH GRANT OPTION;

mysql> exit

Importing Data

Get the database from the osl server
$ wget http://osl.io/nobel -O nobel.sql
put the database in a file called nobel.sql

3.15. Lesson 14: Databases 61

OSU DevOps BootCamp Documentation, Release 0.0.1

$ sudo mysql -p nobel < nobel.sql
Open up mysql shell to execute queries
$ sudo mysql -p nobel

List all the tables
SHOW TABLES;
Print the layout of the database to the screen
DESCRIBE nobel;

3.15.9 Ways to Use a Database

Raw Queries

Native Queries

#!/usr/bin/python
import MySQLdb

db = ("localhost","testuser","test123","nobel")

cursor = db.cursor()

cursor.execute("SELECT subject, yr, winner FROM nobel WHERE yr = 1960")

data = cursor.fetchall()

for winner in data:
print "%s winner in %s: %s " % (winner[0], winner[1], winner[2])

db.close()

Object Relational Mappers

• Maps an Object in an application to a database table or relationship.

• Talks SQL to the database, your favorite language to you.

• Lets you point to different databases with the same syntax.

• Intelligently manages transactions to the database.

SELECT * FROM nobel WHERE yr = 1960
for subject, yr, winner in session.query(Nobel).filter_by(yr=1960):

print "%s winner in %s: %s " % (subject, yr, winner)

3.15.10 TODO: Use an ORM

3.15.11 Further Reading

CS 340 The CS 340 course at OSU (titled “Databases”) is a great introduction to this topic. If you have the option to
take it you should!

62 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

3.16 Lesson 15: Dev Processes & Tools

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.16.1 Code Analsis

(How to(find(the missing parenthesis)).

Static These tools look at your code files and never actually run the program.

Includes Linting and Type Checking.

Dynamic Dynamic Code Analysis tools actually run your code and make verifications by watching how your program
acts, where it fails, what it does in memory, and if your tests are adequate enough.

Includes Debuggers, Memory Profiling Tools, and Code Coverage.

3.16.2 Debugging Tools

• Print (broken) variables.

• Read and reports error messages.

• Highlight (incorrect) syntax.

CLI Tools

C/C++

• GDB: Used to inspect and debug everything in a C program from variables to why it encountered a fatal
failure. Generally called the swiss-army-knife of debugging, a great tool to use in programming, allows
you to set ‘break points’ where the program stops mid-run and you can see what it’s doing.

• Valgrind: Used specifically to inspect and debug memory issues.

$ valgrind ./tests/bin/lexer_tests
...
==6703== Conditional jump or move depends on uninitialised value(s)
...
==6703== by 0x4018C1: print_token (lexer.c:36)
==6703== by 0x4011F7: test_get_tok (lexer_tests.c:54)
==6703== by 0x4008CD: main (lexer_tests.c:8)
...
==6703== LEAK SUMMARY:
==6703== definitely lost: 192 bytes in 8 blocks
==6703== indirectly lost: 162 bytes in 10 blocks

Python

• PDB: The GDB tool for python.

• Stack Traces: A feature built into Python. Explains what function calls triggered a fatal failure. Not
interactive but very useful for debugging in development.

3.16. Lesson 15: Dev Processes & Tools 63

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/development-processes-tools.html
http://slides.osuosl.org/devopsbootcamp/development-processes-tools.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

$ python some_script.py
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in f

TypeError: unsupported operand type(s) for * : ’int’ and ’NoneType’

NodeJS

• node debug: Built into NodeJS used to debug programs in the language.

• Node Inspector: External tool for debugging NodeJS programs.

Web Consoles

• Ctrl+Shift+K (Command+option+k) in Firefox

• Ctrl+Shift+I (Cmd+opt+I) in Chrome

Linters

Examples:

• flake8 (Python)

• slint (C)

• jshint (NodeJS)

src/times.js: line 407, col 20, Expected ’{’ and instead saw ’return’.
src/times.js: line 415, col 49, Missing semicolon.
src/times.js: line 407, col 58, ’error’ is not defined.

64 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

TODO: Lint the Code!

3.16.3 Code Coverage

3.16.4 Integrated Development Environments (IDE)

Examples:

• Netbeans: Java

• Visual Studio: .NET

• PyCharm: Python

• Eclipse: Misc

3.16.5 Style Guides

Example: Linux Kernel Standards

The Linux kernel style guidelines are actually fun to read:

First off, I’d suggest printing out a copy of the GNU coding standards, and NOT read it. Burn them, it’s a
great symbolic gesture.

[https://www.kernel.org/doc/Documentation/CodingStyle]

NASA’s Jet Propulsion Laboratory style guidelines are very short and are concerned with automated tooling to do code
analysis:

All loops shall have a statically determinable upper-bound on the maximum number of loop iterations.

[http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf]

3.16. Lesson 15: Dev Processes & Tools 65

https://www.reddit.com/r/Minecraft/comments/3pnwgn/the_new_debug_screen/
https://xkcd.com/1513/
https://www.kernel.org/doc/Documentation/CodingStyle
http://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf

OSU DevOps BootCamp Documentation, Release 0.0.1

Style Guides Enforced by Linters

3.16.6 Dependency Isolation

Python: Virtualenv

Setup and enter the virtual environment.

$ virtualenv <virtualenv name>
New python executable in /path/to/<venv name>/bin/python
Installing setuptools, pip, wheel...
done.
$ soruce <venv name>/bin/activate

Install a package. This installs it in the current working directory and so does not ask for root permissions.

(<venv name>) $ pip install flask
[...]

To list all packages in the venv:

(<venv name>) $ pip freeze
click==6.6
Flask==0.11.1
itsdangerous==0.24
Jinja2==2.8
MarkupSafe==0.23
Werkzeug==0.11.11

Deactivate (leave) the venv.

(<venv name>) $ deactivate
$

Other Examples

Node.js: Creates a node_modules directory and tracks dependencies in package.json.

Go: Dependencies are tracked via git repositories and using the go get command.

Rust: Dependencies and versions are specified in Cargo.toml. All compiled code (and dependencies) are stored
in a target directory.

3.16.7 Development Servers

A Carbon Copy of the Production Environment(s)

3.16.8 TODO

3.16.9 Further Reading

• The Community Ruby Style Guide is a good resource for anybody learning Ruby. It’s the style guide that
Rubocop enforces.

66 Chapter 3. Donate

https://github.com/bbatsov/ruby-style-guide#prelude
https://github.com/bbatsov/rubocop

OSU DevOps BootCamp Documentation, Release 0.0.1

• The Official Python Style Guide is a well respected style guide for Python and is commonly accepted as the
python style guide.

3.17 Lesson 16: DNS

Homepage Content Slides Video

Warning: This lesson is under construction. Use it for learning purposes at your own peril.
If you have any feedback, please fill out our General Feedback Survey.

3.17.1 Problems DNS Solves

The Domain Name System (DNS) translates human-
readable URLs (devopsbootcamp.osuosl.org) into computer IP addresses (140.211.15.183).

It works by storing records in a distributed tree-like hierarchy. It was designed like this because it scales well.

Obligatory History Lesson

MIT 1
Yale 2

3.17. Lesson 16: DNS 67

https://www.python.org/dev/peps/pep-0008/
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/dns.html
http://slides.osuosl.org/devopsbootcamp/dns.html
https://goo.gl/forms/RyVZkJnownLKu8VI3
https://xkcd.com/1361/

OSU DevOps BootCamp Documentation, Release 0.0.1

Harvard 3
ATT 4

...
joeBillson 14895
susan-gill 15832

3.17.2 How DNS Works

1. Computer A wants to fetch data from devopsbootcamp.osuosl.org. (notice the . at the end of the
address).

2. Computer A checks the local cache.

3. If the address isn’t in the cache, A contacts the DNS root server. (We’re actually skipping a few layers of
cache. Read up for more info on that.)

4. One of the root nodes tells A to check the org node.

5. The org node is contacted and tells A to check the osuosl node.

6. The osuosl node tells it to check the devopsbootcamp node.

3.17.3 A DNS Request

1. A computer makes a request for http://osuosl.org..

2. This request gets sent to the root (.) of the DNS tree.

3. The root sends it off to the org (top level domain) branch.

4. The org node sends it off to the osuosl (domain) branch.

5. The osuosl node sends it to the devopsbootcamp (subdomain) branch.

68 Chapter 3. Donate

https://en.wikipedia.org/wiki/File:An_example_of_theoretical_DNS_recursion.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

3.17.4 DNS Records

Acronym Name
A, AAAA IP Addresses
MX SMTP Mail Exchangers
NS Name Servers
SOA DNS Zone Authority
PTR Pointers for Reverse DNS Lookups
CNAME Domain Name Aliases

A Records

The A record is used to map an IP address to a domain name. This is as close to a ‘regular’ record as you
can get.

osuosl.org. 300 IN A 140.211.15.183

MX Records

osuosl.org. 3600 IN MX 5 smtp3.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp4.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp1.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp2.osuosl.org.

NS Records

osuosl.org. 86258 IN NS ns1.auth.osuosl.org.
osuosl.org. 86258 IN NS ns2.auth.osuosl.org.
osuosl.org. 86258 IN NS ns3.auth.osuosl.org.

SOA (Authority) Records

• A DNS server is authoritative if it has a Start of Authority (SOA) record for a domain

• The root-servers contain SOA records for the TLDs and gTLDs

• The NS servers for each (g)TLD contain SOA records for each registered domain

• ... and so on...

CNAME Records

NXDOMAIN Records

Tells you there is no answer to a query:

Host something.invalid.osuosl.org not found: 3(NXDOMAIN)

Some ISPs and others never serve NXDOMAINS, instead they point you at themselves.

3.17. Lesson 16: DNS 69

OSU DevOps BootCamp Documentation, Release 0.0.1

3.17.5 The Root

$ dig ns .
;; ANSWER SECTION:
. 512297 IN NS i.root-servers.net.
. 512297 IN NS e.root-servers.net.
. 512297 IN NS d.root-servers.net.
. 512297 IN NS j.root-servers.net.
. 512297 IN NS b.root-servers.net.
. 512297 IN NS a.root-servers.net.
. 512297 IN NS f.root-servers.net.
. 512297 IN NS h.root-servers.net.
. 512297 IN NS g.root-servers.net.
. 512297 IN NS c.root-servers.net.
. 512297 IN NS m.root-servers.net.
. 512297 IN NS k.root-servers.net.
. 512297 IN NS l.root-servers.net.

The Thirteen

3.17.6 Example: Recursive Request

First we query a NS record for .:

$ dig ns .
;; QUESTION SECTION:
;. IN NS

;; ANSWER SECTION:

70 Chapter 3. Donate

http://stats.dns.icann.org/hedgehog/

OSU DevOps BootCamp Documentation, Release 0.0.1

. 518400 IN NS i.root-servers.net.

. 518400 IN NS a.root-servers.net.

. 518400 IN NS l.root-servers.net.

. 518400 IN NS f.root-servers.net.

. 518400 IN NS b.root-servers.net.

. 518400 IN NS d.root-servers.net.

. 518400 IN NS k.root-servers.net.

. 518400 IN NS g.root-servers.net.

. 518400 IN NS h.root-servers.net.

. 518400 IN NS m.root-servers.net.

. 518400 IN NS e.root-servers.net.

. 518400 IN NS c.root-servers.net.

. 518400 IN NS j.root-servers.net.

Next we query NS for org.:

$ dig ns com. @a.root-servers.net
;; QUESTION SECTION:
;org. IN NS

;; AUTHORITY SECTION:
org. 172800 IN NS a0.org.afilias-nst.info.
org. 172800 IN NS a2.org.afilias-nst.info.
org. 172800 IN NS b0.org.afilias-nst.org.
org. 172800 IN NS b2.org.afilias-nst.org.
org. 172800 IN NS c0.org.afilias-nst.info.
org. 172800 IN NS d0.org.afilias-nst.org.

;; ADDITIONAL SECTION:
a0.org.afilias-nst.info. 172800 IN A 199.19.56.1
a2.org.afilias-nst.info. 172800 IN A 199.249.112.1
b0.org.afilias-nst.org. 172800 IN A 199.19.54.1
b2.org.afilias-nst.org. 172800 IN A 199.249.120.1
<truncated>

Next we query NS for osuosl.org.:

$ dig ns osuosl.org. @199.19.56.1
;; QUESTION SECTION:
;osuosl.org. IN NS

;; AUTHORITY SECTION:
osuosl.org. 86400 IN NS ns3.auth.osuosl.org.
osuosl.org. 86400 IN NS ns2.auth.osuosl.org.
osuosl.org. 86400 IN NS ns1.auth.osuosl.org.

;; ADDITIONAL SECTION:
ns1.auth.osuosl.org. 86400 IN A 140.211.166.140
ns2.auth.osuosl.org. 86400 IN A 140.211.166.141
ns3.auth.osuosl.org. 86400 IN A 216.165.191.53

Next we query A for osuosl.org.:

$ dig a osuosl.org. @140.211.166.140
;; QUESTION SECTION:
;osuosl.org. IN A

;; ANSWER SECTION:
osuosl.org. 300 IN A 140.211.15.183

3.17. Lesson 16: DNS 71

OSU DevOps BootCamp Documentation, Release 0.0.1

;; AUTHORITY SECTION:
osuosl.org. 86400 IN NS ns1.auth.osuosl.org.
osuosl.org. 86400 IN NS ns2.auth.osuosl.org.
osuosl.org. 86400 IN NS ns3.auth.osuosl.org.

;; ADDITIONAL SECTION:
ns1.auth.osuosl.org. 86400 IN A 140.211.166.140
ns2.auth.osuosl.org. 86400 IN A 140.211.166.141
ns3.auth.osuosl.org. 3600 IN A 216.165.191.53

3.17.7 TODO: Traverse the DNS Tree with dig

3.17.8 TODO: Run a DNS Server

3.17.9 Further Reading

• Try running dig on some of your favorite websites and see what you find.

• Read the manpage on dig and see what else you can find in the output.

• Try registering your own domain name and run a website using the Github Student Pack resources like Digital
Ocean and DNSimple.

3.18 Lesson 17: Configuration Management

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.18.1 Configuration Management

“Configuration management is the process of standardizing resource configurations and enforcing their
state across IT infrastructure in an automated yet agile manner.”

• Puppet Labs

user { ’audience’:
ensure => present,

}

Short History of CM

3.18.2 Concept: Infrastructure as Code

Infrastructure as code is the act of describing what you want your servers to look like once, and using that
to provision many machines to look the same.

It turns pets into cattle. (more on this difference later)

• CM enables System Operation to define their infrastructure in code.

72 Chapter 3. Donate

https://education.github.com/pack
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/configuration-management.html
http://slides.osuosl.org/devopsbootcamp/configuration-management.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

• Install packages, configure software, start/stop services.

• Ensure/guarantee a specific state of a machine.

• Provide history of changes for a system.

• Repeatable way of rebuilding a system.

• Orchestrate a cluster of services together.

3.18.3 Pull vs Push Models

Pull Model

• When the server being provisioned (node) runs an agent (daemon) that asks a central authority (master)
if/when it has any updates that it should run.

• Requires a daemon to be installed on all machines and a central authority to be setup.

• Scales well, difficult to manage.

Push Model

• A central server contacts the nodes and sends updates as they are needed.

• When a change is made to the infrastructure (code) each node is alerted of this and they run the changes.

• Simple to manage and setup (usually uses prevalent SSH protocol), not scalable.

3.18. Lesson 17: Configuration Management 73

OSU DevOps BootCamp Documentation, Release 0.0.1

3.18.4 Tools

Puppet

• Uses custom CM Language.

• Primary Push Model.

• Widely Adopted.

• Very stable.

• Difficult to get setup.

[Puppet Site]

74 Chapter 3. Donate

https://puppet.com/

OSU DevOps BootCamp Documentation, Release 0.0.1

Chef

• Primarily Push Model.

• Code files are Ruby.

• Widely Adopted.

• Difficult to setup.

[Chef Site]

3.18. Lesson 17: Configuration Management 75

https://www.chef.io/

OSU DevOps BootCamp Documentation, Release 0.0.1

CFEngine

• Fast at execution, slow at adaptation.

• Very old.

• Stable.

[CFEngine Site]

Ansible

• Easy to use.

• Easy to setup.

• Does not scale well.

76 Chapter 3. Donate

https://cfengine.com/

OSU DevOps BootCamp Documentation, Release 0.0.1

[Ansible Site]

SaltStack

• Easy to use.

• Hard to get started.

[SaltStack Site]

3.18.5 Delcaration Configuration

packages [nginx, python, vim]
state installed
update true

service nginx
state enabled
alert service myapp_daemon

Chef Example

• Install apache and start the service

• Configuration is called a ‘recipe’

• Written as pure Ruby code

package "apache" do
package_name "httpd"
action :install

end

service "apache" do
action [:enable, :start]

end

Note: Since chef uses Ruby you can do loops and other cool Ruby-isms in your configuration management. This can
be a gift and a curse.

Puppet Example

• Install apache and start the service

• Configuration is called a ‘manifest’

• Puppet DSL based on Ruby

package { "apache":
name => "httpd",
ensure => present,

}

service { "apache":
name => "apache",

3.18. Lesson 17: Configuration Management 77

https://www.ansible.com/
https://saltstack.com/

OSU DevOps BootCamp Documentation, Release 0.0.1

ensure => running,
enable => true,
require => Package["apache"],

}

Note: Since Puppet designed it’s own language for Configuration managent you are more limited in what you can
express with Puppet, but this isn’t always a bad thing. It’s feature rich and can do pretty much anything Chef can.

Ansible Example

• Install apache and start the service

• Configuration is called a ‘playbook’

• Uses YAML file format for configuration

- hosts: all
tasks:

- name: Install Apache
yum:

name: httpd
state: present

- name: Start Apache Service
service:

name: httpd
state: running
enabled: yes

Note: Ansible’s langauge is Yaml, which is basically JSON but easier to read and write. This is similar to Puppet
in it limits the possible functionality, but again: these tools all achieve the same result, they just get there in different
ways.

3.18.6 TODO: Use Ansible to Provision localhost

$ pip install ansible

3.18.7 Further Reading

3.19 Lesson 18: Application Isolation

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

78 Chapter 3. Donate

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/application-isolation.html
http://slides.osuosl.org/devopsbootcamp/application-isolation.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

3.19.1 Application Isolation

3.19.2 Virtual Machines

[vm] # ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.6 110564 3164 ? Ss 2015 11:17 /lib/systemd/systemd --system --deserialize 15
root 2 0.0 0.0 0 0 ? S 2015 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 2015 3:55 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< 2015 0:00 [kworker/0:0H]
[... 120+ more lines ...]

[host] # ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 200328 5208 ? Ss Aug25 0:44 /sbin/init
root 2 0.0 0.0 0 0 ? S Aug25 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Aug25 0:05 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< Aug25 0:00 [kworker/0:0H]
[... 240+ more lines ...]

OS Emulation

3.19.3 Containers

$ ps aux # Lists all processes running on an OS
PID USER TIME COMMAND

3.19. Lesson 18: Application Isolation 79

https://commons.wikimedia.org/wiki/File:Hardware_Virtualization_%28copy%29.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

1 root 0:00 sh
6 root 0:00 ps aux

Not a Virtual Machine

CGroups + Systemd

3.19.4 Pros

Virtual Machines Containers
Complete process isolation Fast startup
‘Battle Tested’ Little overhead

3.19.5 Cons

Virtual Machines Containers
Slightly more overhead. Security concerns.
Slow startup. No cross-kernel emulation.
Cross-OS emulation.

80 Chapter 3. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

3.19.6 Tools

Virtual Machines Containers
VirtualBox Docker
VMWare Rkt

Virtual Machines

VirtualBox An Open Source VM Manager.

Widely used and supported on Linux, Mac, and Windows.

VMWare A closed source VM Manager.

VMWare is a widely used and tends to have better performance than Virtual Box. While it can emulate Linux it
does not work natively on Linux.

KVM The Kernel-based Virtual Machine.

Linux’s native infrastructure for handling Virtual Machines and emulation. Usually used in a larger emulation
program, not alone.

Containers

Docker The defacto CLI tool for creating and using containers.

Very popular and well integrated into other tools.

RKT A competitor to Docker created by CoreOS. Approaches container management from a different angle which
has it’s advantages and disadvantages.

chroot The oldschool way to use containers. Not a container in the modern sense, but achieves similar isolation.

Jails The BSD Unix form of containerization. Offers a level of secure isolation not really possible in Linux.

3.19.7 TODO

3.19.8 Further Reading

3.20 Lesson 19: Cloud Infrastructure

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.20.1 What the Cloud Looks Like

[...] a model for enabling ubiquitous, on-demand access to a shared pool of configurable computing
resources.

3.20. Lesson 19: Cloud Infrastructure 81

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/cloud-infrastructure.html
http://slides.osuosl.org/devopsbootcamp/cloud-infrastructure.html
https://goo.gl/forms/RyVZkJnownLKu8VI3

OSU DevOps BootCamp Documentation, Release 0.0.1

3.20.2 Advantages over Bare Hardware

• Ephemeral: Creating and Destroying operating systems is quick and painless.

• Cost effective: Pay for what you use.

• Low startup cost: Initial investment is cheap, <$100 as opposed to >$1,000+. (unless you are running a private
cloud, more on that in a second).

3.20.3 Private Clouds

3.20.4 Public Clouds

3.20.5 Cloud + Configuration Management

3.20.6 Cattle VS Pets

Advantages

Disadvantages

3.20.7 TODO

3.20.8 Further Reading

3.21 Lesson 20: Contributing to Open Source

Homepage Content Slides Video

82 Chapter 3. Donate

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/contributing-to-open-source.html
http://slides.osuosl.org/devopsbootcamp/contributing-to-open-source.html

OSU DevOps BootCamp Documentation, Release 0.0.1

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

3.21.1 Open Source

• Learn lots of new things, and grow as developers.

• Give back to a community that has given you something.

• You have more to contribute than you may realize!

• Meet amazing people.

• Personal fulfillment.

Community Benefit

Share the Love (and the Code)

Personal Benefit

• ‘Learning the Ropes’ of a substantial code-base

• Working with others

• Getting code reviewed

• Documenting contributions

• Testing your changes

Free?

Free Software: [Free Software] means that the users have the freedom to run, copy, distribute, study, change
and improve the software.

The Four Freedoms:

0. The freedom to run the program as you wish, for any purpose.

1. The freedom to study how the program works, and change it so it does your computing as you wish. Access
to the source code is a precondition for this.

2. The freedom to redistribute copies so you can help your neighbor.

3. The freedom to distribute copies of your modified versions to others. By doing this you can give the whole
community a chance to benefit from your changes. Access to the source code is a precondition for this.

gnu.org/philosophy/free-sw

3.21. Lesson 20: Contributing to Open Source 83

https://goo.gl/forms/RyVZkJnownLKu8VI3
https://www.gnu.org/philosophy/free-sw.en.html

OSU DevOps BootCamp Documentation, Release 0.0.1

3.21.2 Acessing a New Community

Elitism vs Nice-ism

Communication style

Documentation and Guides

Things to Look for

• When are the top pull requests time-stamped? Anything older than 3-4 months might not be ideal.

• Open / recent issues (especially with help wanted labels) are good.

• Many contributors means they’re used to people helping out.

3.21.3 How to Get Involved

3.21.4 Finding a Project

In order of perceived usefulness:

• Openhatch

• 24 pull requests

• BugsAhoy

• Showcased github projects

• Trending github projects

• Choose a company, search “<Company Name> Open Source”

• Easy bugs

• GSOC submitters who didn’t get enough interns

• Search by language

• Search by project type – find something that interests you (web dev? bioinformatics? video games?)

• Your immediate payment for contributions will be satisfaction, so pick something satisfying

I Can’t Find a Project I Like!

That’s okay.

Sometimes you find the project, sometimes the project finds you.

3.21.5 First Steps

0. Find a project

1. Read Contributing and Getting Started docs

2. Look at list of issues

84 Chapter 3. Donate

http://openhatch.org/search
http://24pullrequests.com/
http://www.joshmatthews.net/bugsahoy/
https://github.com/showcases
https://github.com/trending

OSU DevOps BootCamp Documentation, Release 0.0.1

3. Do a thing!

• Write a test

• Fix a typo

• Deploy and update the installation docs

3.21.6 Know your Licenses

• MIT: A very lax license permitting any (free and non-free) use of the software.

• Apache: A little more precise, gives more rights to the developers.

• AGPL/GPL/LGPL: For when you love Open Source and want to spread the love.

• Creative Commons: For when you’re not writing code.

• http://choosealicense.com/

3.21. Lesson 20: Contributing to Open Source 85

http://choosealicense.com/

OSU DevOps BootCamp Documentation, Release 0.0.1

3.21.7 TODO: Find a FOSS Project

3.21.8 Further Reading

3.22 About

3.22.1 What is DevOps?

DevOps is a hybrid of skills from both Software Development (Dev) and Computer Operations (Ops) intended to
meet the unique demands of cloud computing. Software Developer and Systems Administrator are no longer mutually
exclusive job titles. Devs need more Ops knowledge to understand how their application will run in the real world.
Admins need more Dev knowledge to design infrastructure that fit an app’s needs efficiently and effectively. To top it
off site reliability engineers and many modern security roles require at least a little background in both development
and operations.

3.22.2 Purpose of DevOps BootCamp

DevOps BootCamp is an OSU Open Source Lab program dedicated to teaching core software development and sys-
tems operation skills. The program is free and open to any interested OSU students, community member, and online
go-getter. DevOps BootCamp provides a comprehensive Open Source education that is outside the scope of regular
Linux Users Group meetings and OSU Coursework.

What Students Get

• Mentorship from students and professionals with advanced skills in software development and systems admin-
istration.

• Professional connections in the software industry.

• A welcoming environment to start learning, for those who have always wanted to learn about software develop-
ment and systems administration but were never sure where to start.

• An opportunity to fill in knowledge gaps for self-taught coders or sysadmins.

• The skills to build and deploy Open Source software, or contribute to existing projects

What the Open Source Lab Gets

• The OSL gets a larger pool of candidates to recommend to companies interested in recruiting students.

• The OSL gets to work with a wider variety of students, helping it contribute to the school of EECS.

• The Open Source Community gets more project contributors.

Target Audience

Our goal is to make the DevOps BootCamp program accessible to students and community members from all back-
grounds. Students should:

• Want to learn.

• Be willing to ask questions

• Be open to setting apart time to play with the tools you’ll be learning about in the class.

86 Chapter 3. Donate

https://en.wikipedia.org/wiki/Cloud_computing
https://osuosl.org

OSU DevOps BootCamp Documentation, Release 0.0.1

3.22.3 Policies

Attendance

Attendance is not mandatory but highly suggested to get the most out of DBOC; We will not spend class time reviewing
material for those who skip a lecture and each classes curriculum will build on what you learned the previous session.
All curriculum will be available online before and after class sessions to get caught up.

BootCamp mentors will be available at scheduled times outside of regular classes to help answer any questions about
the training program’s content. If you attend a lesson and don’t understand something then you are encouraged to ask
that question during the meeting since others are likely have the same question.

Laptops

As the course progresses, you will need a laptop. We hope and recommend that you decide to set up your laptop to
dual-boot to Linux as the course progresses, but it is not required. If you don’t own a laptop and are an OSU student
you can check out a laptop from the OSU Library for at least 24 hours at a time.

As long as your laptop is new enough to boot from USB and connect to a wireless network the exact specifications do
not matter. You will be provided with a remote virtual machine with which to do all class projects.

If you are not an OSU student and do not have access to a working laptop, contact the DevOps BootCamp (email
devopsbootcamp) organizers and they will see whether one can be loaned out to you.

3.22.4 Get Involved

Mailing list

Join the mailing list for updates.

IRC

Join us on irc.freenode.net in #devopsbootcamp (students will be setting up an IRC network for the
program early in the program).

Website & Curriculum

If you’d like to help edit this site, email devopsbootcamp or ping anyone in #devopsbootcamp on Freenode with
your GitHub username to get access to the web site repo. You’ll also want to learn the ReStructured Text markup
language to edit the site, if you don’t already know it.

3.23 Schedule

The DevOps BootCamp content is available for free but meet-space guided lectures are offered throughout the year.
Check the schedule below for our in-person lectures; each lecture covers a different part of the curriculum covering
the entire course during the OSU academic school year.

Warning: If you are working ahead be aware that the schedule and slides may be subject to change. Check back
regularly.

3.23. Schedule 87

mailto:devopsbootcamp@osuosl.org
mailto:devopsbootcamp@osuosl.org
http://lists.osuosl.org/mailman/listinfo/devops-bootcamp
mailto:devopsbootcamp@osuosl.org
http://sphinx-doc.org/rest.html

OSU DevOps BootCamp Documentation, Release 0.0.1

3.23.1 Fall

Lesson Date/Time Location Description
DevOps Daycamp Oct 1, 10am-3pm OSU KEC 1001 DevOps DayCamp (DOBC Kickoff)
Fall Meeting 2 Nov 5, 11am-3pm OSU KEC 1001 Files, Verson Control, Programming
Fall Meeting 3 Dec 3, 11am-3pm OSU KEC 1001 Frameworks, Testing and CI

3.23.2 Winter

Lesson Date/Time Location Description

3.23.3 Spring

Lesson Date/Time Location Description

3.24 Running DOBC

If you’re reading this it means you’re interested in running DOBC yourself. It may have been passed on to you, or you
may just like the curriculum and want to use it to start your own DOBC. Either way, thank you for reading this!

This page is a growing checklist, warning, notes, and fables from those teaching and contributing to DOBC. If you
read this, heed it’s warnings and take it’s lessons to heart you will no doubt be on your way to success.

3.24.1 Before You Begin

3.24.2 Meet-Space Lectures

Practice. Just like any public speaking engagement, you should review what you’re going to do and practice it in real
time. This means you should say the things you’re going to say and even do the activities the students will do.

Always have a buddy. Teaching alone can be done, but if at all possible try to have a teaching ‘buddy’. This person
is at least about as expert on the topics you’re covering as you are. Your buddy can field questions, help with
TODOs, and can even take over the lesson if you need them to (you might need to go to the bathroom, who
knows).

Always be taking notes. As a lecturer you won’t always teach perfectly. You won’t get it perfect the first, second,
third, or even last time – but you should always strive for perfection.

Take notes on what could have gone better, questions that were asked, and confusions students had. The DOBC
curriculum can be very dense and sometimes it skims over important stuff. During each lesson be sure to
improve the curriculum based on your notes. Whoever teaches it next time will thank you.

3.24.3 Online Engagement

3.24.4 Adding to Lessons

Attribute Images We do our best to attribute images by linking them to the website we got them from. If you add
images to the website try to do the same.

88 Chapter 3. Donate

https://goo.gl/maps/KZiKaCoeuru
https://goo.gl/maps/KZiKaCoeuru
https://goo.gl/maps/KZiKaCoeuru

	Ready to Learn DevOps? Lesson 0: Start Here
	Schedule
	Fall
	Winter
	Spring

	Donate
	Lesson 0: Start Here
	Lesson 1: First Steps
	Lesson 2: Operating Systems
	Lesson 3: Shell Navigation
	Lesson 4: Users, Groups, Permissions
	Lesson 5: Files
	Lesson 6: Packages, Software, Libraries
	Lesson 7: Questions, Answers, Docs
	Lesson 8: Version Control
	Lesson 9: Programming
	Lesson 10: Frameworks
	Lesson 11: Testing
	Lesson 12: Continuous Integration
	Lesson 13: Security
	Lesson 14: Databases
	Lesson 15: Dev Processes & Tools
	Lesson 16: DNS
	Lesson 17: Configuration Management
	Lesson 18: Application Isolation
	Lesson 19: Cloud Infrastructure
	Lesson 20: Contributing to Open Source
	About
	Schedule
	Running DOBC

