
OSU DevOps BootCamp
Documentation

Release 0.0.1

OSU OSL
OSU LUG

October 30, 2018

Contents

1 Ready to Learn DevOps? Lesson 0: Start Here 3

2 DevOps BootCamp: Fall 2018 5

3 DevOps Open Office Labs 7

4 Schedule 9
4.1 Fall . 9
4.2 Open Office Labs . 9

5 Donate 11
5.1 Lesson 0: Start Here . 11
5.2 Lesson 1: First Steps . 15
5.3 Lesson 2: Operating Systems . 21
5.4 Lesson 3: Docs & Communication . 24
5.5 Lesson 4: Shell Navigation . 31
5.6 Lesson 5: Users, Groups, Permissions . 38
5.7 Lesson 6: Files . 43
5.8 Lesson 7: Packages, Software, Libraries . 48
5.9 Lesson 8: Version Control . 51
5.10 Lesson 9: Programming . 55
5.11 Lesson 10: Frameworks . 62
5.12 Lesson 11: Testing . 66
5.13 Lesson 12: Continuous Integration . 69
5.14 Lesson 13: Security . 71
5.15 Lesson 14: Databases . 76
5.16 Lesson 15: Dev Processes & Tools . 84
5.17 Lesson 16: DNS . 89
5.18 Lesson 17: Configuration Management . 94
5.19 Lesson 18: Application Isolation . 100
5.20 Lesson 19: Cloud Infrastructure . 103
5.21 Lesson 20: Contributing to Open Source . 105
5.22 About . 107
5.23 Setting up SSH . 109
5.24 Setting up Docker . 109
5.25 Schedule . 110
5.26 Running DOBC . 111

i

ii

OSU DevOps BootCamp Documentation, Release 0.0.1

DevOps BootCamp (DOBC) is a free course hosted by the OSU Open Source Lab. The course is dedicated to teaching
core software development and systems operation skills to passionate OSU students and community members.

DOBC is always 100% free for in-person and online students.

Contents 1

http://osuosl.org

OSU DevOps BootCamp Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Ready to Learn DevOps? Lesson 0: Start Here

DevOps Bootcamp’s curriculum is available for you to learn at your own pace. Get started now!

3

OSU DevOps BootCamp Documentation, Release 0.0.1

4 Chapter 1. Ready to Learn DevOps? Lesson 0: Start Here

CHAPTER 2

DevOps BootCamp: Fall 2018

DevOps BootCamp is a single-day event with one track to help attendees kick off the year with fundamentals of
system administration and software development. The hands-on workshop is designed to teach participants DevOps,
a program development process that includes building, testing, and releasing software.

Please register if you’re planning on attending BootCamp this fall.

5

http://devopsbootcamp.osuosl.org/daycamp/
https://devopsbootcamp2018.eventbrite.com

OSU DevOps BootCamp Documentation, Release 0.0.1

6 Chapter 2. DevOps BootCamp: Fall 2018

CHAPTER 3

DevOps Open Office Labs

Following the Fall Kickoff, we will be hosting bi-weekly open office labs in Milne 224 in two hour blocks. These labs
initially will be structured around the content on the website but will aim to be mostly hands on. OSL students and
staff will be on-site to help you work through the content. Content discussed at each lab will depend on the attendees
interest. We will also be opening up our Milne server room for students to learn and interact with actual hardware.

Some interesting topics we may end up discussing include (expanded on the lessons we already have on the website):

• Automated Linux installs

• Network switch configuration

• Out of Band (IPMI) configuration and usage

• Installing servers in racks and configuring them

• Setting up servers to run various services (email, web, DNS, etc)

• Open Source software contributions

Our Milne server room includes three OpenCompute Racks donated from Facebook (includes a total of 90 compute
nodes), managed network switches, and other various rack mounted server hardware.

7

https://www.opencompute.org/

OSU DevOps BootCamp Documentation, Release 0.0.1

8 Chapter 3. DevOps Open Office Labs

CHAPTER 4

Schedule

The DevOps BootCamp content is available for free but meet-space guided lectures are offered throughout the year.
Check the schedule below for our in-person lectures; each lecture covers a different part of the curriculum covering
the entire course during the OSU academic school year.

Warning: If you are working ahead be aware that the schedule and slides may be subject to change. Check back
regularly.

Fall

Lessons Covered Date/Time Location Description
0 - 7 Oct 27, 2018 9:30am-3:30pm OSU KEC 1001 DevOps BootCamp Fall Kickoff

Open Office Labs

Each lab has two time slots (please choose one) to help assist with students being able to attend. All labs will in Milne
224.

Description Slot 1 Slot 2
Lab #1 Oct 31, 2018 10am-12pm Nov 1, 2018 2-4pm
Lab #2 Nov 14, 2018 10am-12pm Nov 15, 2018 2-4pm
Lab #3 Nov 28, 2018 10am-12pm Nov 29, 2018 2-4pm

9

https://goo.gl/maps/KZiKaCoeuru
https://goo.gl/maps/rzrpJKzV82U2
https://goo.gl/maps/rzrpJKzV82U2

OSU DevOps BootCamp Documentation, Release 0.0.1

10 Chapter 4. Schedule

CHAPTER 5

Donate

We appreciate the help! To donate, go to http://osuosl.org/donate.

Lesson 0: Start Here

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

11

http://osuosl.org/donate
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/start-here.html
http://slides.osuosl.org/devopsbootcamp/start-here.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

About the Program

Definition: System Administration

• Responsible for systems (typically servers) running code, applications, and services

– Keeping applications running (they crash, sometimes a lot)

– Updates, Security

– Monitoring, Logging

• Automates significant amounts of work with infrastructure

– This enables a small team to administer hundreds or thousands of servers

• Involved in infrastructure architecture and decisions

• Can be involved in QA/Development work as well

Definition: System Engineers

• Responsible for creating the platforms code is run on

– Work at a lower-level

– Generally make infrastructure decisions for others

– Often have expertise with some particular sub-system (networking, filesystems, etc)

– Not necessarily on-call, but can be

12 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

• Sometimes intermixed with Systems Administrators who want Engineer in their title

Definition: DevOps Engineers

• Newer position

• Mix of Systems (Operations) and Development work

• Involved where the application and its platform meet

• Responsibilities include a mix of both Ops and Dev, usually:

– General infrastructure/automation

– Continuous Integration and Testing

– Developer Environments/Workflow

– Logging

– Often on-call

Definition: Site Reliability Engineers (SRE)

• SRE and DevOps Engineers share the same foundational principles

• SRE is viewed as a “specific implementation of DevOps with some idiosyncratic extensions”

• SRE was originally created at Google as a process to improve managing their services

• Most large tech companies now follow SRE processes

DevOps

DevOps is a field which takes skills from Software Development and Operations Engineering to create
and run applications more effectively.

TLDR: Development + Operations == Better Services

DevOps defines 5 key pillars of success:

1. Reduce organizational silos

2. Accept failure as normal

3. Implement gradual changes

4. Leverage tooling and automation

5. Measure everything

What DevOps BootCamp (DOBC) is

TLDR: Couch to DevOps in 1 school year

DOBC is a free education program offering:

• Mentors teaching DevOps related tools and concepts.

• A challenge for anybody willing to put in the effort.

• One-on-one Apprenticeship.

5.1. Lesson 0: Start Here 13

OSU DevOps BootCamp Documentation, Release 0.0.1

• Hands-on training and lectures

• Free and Open Source course materials!

What DOBC is not

DevOps BootCamp is not:

• A for-credit OSU class

• A Student job

• Easy

Why DOBC Exists

DOBC was created because the OSU OSL:

1. Merged with the school of EECS.

2. Wanted to help students meet Company demands and expectations of recent graduates.

3. Needed to bridge the “Skills Gap” of the OSU EECS curriculum.

4. Wanted to build a DevOps Learning community.

What You Will do

You will Learn:

• Linux systems

• Networking

• Software development

• Tools and why they matter

You will build:

• Functioning applications on the cloud

• Cloud infrastructures

Who Teaches DOBC

The teachers of DOBC include:

• OSL Students

• OSL Faculty

• Guests from The Industry

• You!

14 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Bi-Weekly Open Office Labs

Discuss more advanced topics and also have hands-on with server and network equipment in our lab.

• Automated Linux installs

• Network switch configuration

• Out of Band (IPMI) configuration and usage

• Installing servers in racks and configuring them

• Setting up servers to run various services (email, web, DNS, etc)

• Open Source software contributions

• Software Development

The ‘Agreement’

You get out what you put in. DOBC is not meant to be easy. Stick with it, persistence is rewarded.

Student Benefits: A free education on industry topics, tools, and concepts

Student Responsibilities: Show up if you can, keep up if you cannot, put forth effort, and don’t forget to have fun.

Give us feedback.

• There will be a survey you, should take it.

• Honesty is the best policy.

Getting Involved

Where To Ask Questions

• Slack

• During Lecture and Hand-on Lessons

• More on the About page...

How To Ask Questions

• Always be respectful to those helping you.

• Stay calm and articulate.

• Explain you are trying to achieve and be thorough.

Next: Lesson 1: First Steps

Lesson 1: First Steps

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

5.2. Lesson 1: First Steps 15

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/first-steps.html
http://slides.osuosl.org/devopsbootcamp/first-steps.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

Vocabulary

A 10,000ft view of the world

General Topics:

• Software: A program that runs on a computer.

• Operating System: Computer software that manages other software.

• GNU/Linux: A free Operating System.

• Computer Security: Like physical security but harder to solve with a baseball bat.

• Virtual Machine: A computer emulated in software.

• Containers: Not virtual machines, but basically virtual machines.

Development:

• Version Control: A way to track changes and contributions to a project.

• Continuous Integration: Releasing updates continuously.

Buzzwords:

• FOSS: Free (and Libre) Open Source Software. Free as in Speech, not Free as in Pizza (but that too
usually).

• ‘The Cloud’: Computers somewhere else.

• Docker: Software that manages Linux containers

Exercise: What Vocabulary Do You Know?

• What other vocabulary can you think of related to DevOps?

• What about Silicon Valley, Programming, System Administration, etc?

Notation

• Variable (use whatever word you like here e.g., foo, bar, baz)

$ONE_VARIABLE_NOTATION
<another notation for variables>

• Literal (copy this exactly): copy_me_exactly

• Comments (parts of the code just for humans)

this_is(code) # everything after the octothorp is a comment!

other_code(line) // This can also be a comment. It depends on the
// language!

Code-block:

#! /usr/bin/env python
This is a code block.
Most of the time you can copy this code and run it exactly as is.
It should be clear Where it ’goes’ and how to run it based on
context.
print(’Hello world!’)

16 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Copy the text after ‘$‘ into your terminal & press enter.
$ echo Hello World

Exercise: Reading Examples

Trick question: how would you read this

#!/bin/python
dogs = [’$BREED_ONE’, ’$BREED_TWO’, ’$BREED_THREE’]
for breed in dogs:

print(breed)

Actually prints...

$BREED_ONE
$BREED_TWO
$BREED_THREE

Answer: Reading Examples

Replace the $BREED_N with actual dog breeds.

#!/bin/python
dogs = [’corgie’, ’pug’, ’french bulldog’]
for breed in dogs:

print(breed)

Actually prints...

corgie
pug
french bulldog

SSH: Secure Shell

• Secure Shell (SSH) provides a secure channel to access a Linux machine remotely via command line.

• It’s a primary tool for almost every DevOps engineer

• Designed as a replacement to Telnet which provides unsecured remote shell access

• Allows for password logins and private/public key-based logins which are more secure

• Some tricks you can do with SSH

– Run a single command remotely

– Secure file transfer (via scp or WinSCP)

– Port forwarding, SOCKS proxy or tunnel

– SSHFS – userspace filesystem which uses SSH

5.2. Lesson 1: First Steps 17

https://winscp.net/eng/download.php
https://github.com/libfuse/sshfs

OSU DevOps BootCamp Documentation, Release 0.0.1

Getting Setup on Linux

There are a variety of ways to run Linux!

• Dual-boot Windows+Linux

• Virtual Machine (VMWare, Virtualbox, cloud server, etc)

• Container (Docker)

• Windows Linux Subsystem

Docker Setup

We suggest you install Docker and Docker Compose, a tool which makes it easy to run small Linux Containers on
your system in a safe sandbox without requiring to install Linux on your own machine. This is the same setup we used
in the lecture.

Make sure you read the install documentation for Docker to ensure your system supports running it and have the
required BIOS settings enabled.

After you have it installed, run this to start a container:

$ git clone https://github.com/DevOpsBootcamp/Bootcamp-Exercises.git
$ cd Bootcamp-Exercises
$ docker-compose up -d
$ docker-compose run -p 8080:8080 dobc bash

You can log out by typing exit and then enter which will stop the container.

18 Chapter 5. Donate

https://www.docker.com/community-edition
https://docs.docker.com/compose/install/#install-compose
https://en.wikipedia.org/wiki/LXC

OSU DevOps BootCamp Documentation, Release 0.0.1

To stop the container, run the following:

$ docker-compose kill
$ docker-compose rm --all

Feel free to try other Docker images, some that we recommend include:

• ubuntu

• debian

• centos

• fedora

To run those, do the following:

$ docker run -it --rm <docker image name> bash

You can find have more images at the Docker Hub. We also recommend you read Getting started with Docker to have
a better understanding of how it works.

Virtual Machine Setup

Instead of using Docker, you can also run a Linux Virtual Machines on your computer. This will give you a full Linux
environment as if it were on a real machine.

We suggest you install Vagrant, a tool which makes it easy to run and acquire Virtual Machines.

You may also need to install VirtualBox or install VMWare (Requires TEACH access) a tool necessary for Vagrant to
function.

After you get Vagrant and either VirtualBox or VMWare installed, clone our vagrant repo (make sure you install Git
first!) and then start the VM:

$ git clone https://github.com/DevOpsBootcamp/vagrant.git
$ cd vagrant
$ vagrant up
$ vagrant ssh

5.2. Lesson 1: First Steps 19

https://hub.docker.com/explore/
https://docs.docker.com/get-started/
https://en.wikipedia.org/wiki/Virtual_machine
https://www.vagrantup.com/docs/installation/
https://en.wikipedia.org/wiki/Virtual_machine
https://www.virtualbox.org/
https://teach.engr.oregonstate.edu/teach.php?type=vmap
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://www.vagrantup.com/

OSU DevOps BootCamp Documentation, Release 0.0.1

Windows Subsystem for Linux Setup

The Windows Subsystem for Linux (Bash on Windows) allows you to run userspace Linux software on Windows,

while using less resources than a virtual machine. If you
installed the Fall Creators Update for Windows 10, you can install one or more Linux distributions through the Win-
dows Store.

Exercise: Change Your Password!

Challenge Change your password on your Linux machine.

$ passwd
Changing password for user <user>.
Changing password for <user>.
(current) UNIX password: # Enter old password, hidden
New password: # Enter new password, also hidden
Retype new password:
passwd: all authentication tokens updated successfully.

Don’t forget: when you login next time, use the new password you just set.

Further Reading

• More information on Linux Containers and Virtual Machines.

• ‘Install Putty‘_ if you want to access a remote Linux box.

• Install Docker if you want to run a local Linux container

• Install Vagrant if you want to run a local Linux Virtual machine.

• Install VirtualBox in addition to Vagrant for local virtual machines.

• Install VMWare in addition to Vagrant for local virtual machines.

• Windows Subsystem for Linux if you want to use Linux without VM overhead.

Next: Lesson 2: Operating Systems

20 Chapter 5. Donate

https://msdn.microsoft.com/en-us/commandline/wsl/about
https://msdn.microsoft.com/en-us/commandline/wsl/install-win10
https://en.wikipedia.org/wiki/LXC
https://en.wikipedia.org/wiki/Virtual_machine
https://www.docker.com/community-edition
https://www.vagrantup.com/docs/installation/
https://www.virtualbox.org/
https://teach.engr.oregonstate.edu/teach.php?type=vmap
https://msdn.microsoft.com/en-us/commandline/wsl/about

OSU DevOps BootCamp Documentation, Release 0.0.1

Lesson 2: Operating Systems

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

What an Operating System is

5.3. Lesson 2: Operating Systems 21

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/operating-systems.html
http://slides.osuosl.org/devopsbootcamp/operating-systems.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2
https://en.wikipedia.org/wiki/File:Operating_system_placement.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

Anatomy of an OS

• User Interface: What you interact with. Window Managers for instance.

• Application Layer: What developers use to make software run.

• Kernel: The Core of the OS. Makes communication between hardware and applications sane.

• Hardware: What does the actual computations. The thing your keyboard is plugged into.

Types of Operating Systems

Popular Operating Systems

• UNIX

– Linux

* Android

* Debian

* RHEL

– MacOS / Darwin

– FreeBSD

• Windows

GNU/Linux

Welcome to the Family

22 Chapter 5. Donate

https://commons.wikimedia.org/wiki/File:Kernel_Layout.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

Flavors of Linux

• Debian

– Ubuntu

* LinuxMint

• RedHat

– RHEL

– Fedora

– Centos

• Gentoo

– ChromeOS

• Slackware

• ArchLinux

Exercise: Pop Quiz

1. What are some different types of Operating Systems?

5.3. Lesson 2: Operating Systems 23

OSU DevOps BootCamp Documentation, Release 0.0.1

2. What constitutes a ‘Distribution’ of Linux?

3. How is Linux different from Windows? OSX?

4. How is Debian different from Gentoo?

Further Reading

OSU Courses:

CS 312: Linux System Administration

• DOBC in class form

• Not currently offered, however course content is online

• http://cs312.osuosl.org

OSU Courses:

CS 344: Operating Systems I

• Required course for all CS Students at OSU.

• Covers fundamentals of low-level programming concepts.

– Multi-threaded programming

– Read / Write operations

– Socket programming

OSU Courses:

CS 444: Operating Systems II

• Required course for all CS Students at OSU.

• Covers kernel hacking and low-level OS design.

– IO / Process scheduling

– Building kernel modules

– Memory management

Free Online Resources: OSDev.org is a wiki dedicated to helping people develop their own operating systems. It’s
a big leap from this lesson, but great if you’re interested in learning the nitty-gritty.

Operating Systems Design and Implementation by Andrew S. Tanenbaum is a classic in the world of OS Devel-
opment. It’s also a big leap, but can teach you more about how Operating Systems work than you ever thought
there was to know.

Next: Lesson 3: Docs & Communication

Lesson 3: Docs & Communication

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

24 Chapter 5. Donate

http://cs312.osuosl.org
http://wiki.osdev.org/Main_Page
https://amzn.com/0131429388
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/documentation-communication.html
http://slides.osuosl.org/devopsbootcamp/documentation-communication.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

When in doubt

$ <program> --help
$ <program> -h

Most programs allow you to pass a help flag which will print out basic usage. This is useful as a quick reference for
how to use the program.

Man Pages

$ man <program>

• Type / and then enter a keyword to see where that word appears.

• Press n to go to the next (and p to go to the previous) occurrence of that word.

$ man man

MAN(1) Manual pager utils MAN(1)

NAME
man - an interface to the on-line reference manuals

SYNOPSIS
man [-C file] [-d] [-D] [--warnings[=warnings]] [-R
encoding] [-L locale] [-m system[,...]] [-M path] [-S list]
[-e extension] [-i|-I] [...]

DESCRIPTION
man is the system’s manual pager. Each page argument given
to man is normally the name of a program, utility or
function. The manual page [...]

Anatomy of a Man Page

Most Man Pages include:

• Name

• Flags

• Description

• Basic Usage

• Authors

If you’re lucky they will also include:

• A Good description

• Advanced Usage.

• Examples

• History

• See Also

5.4. Lesson 3: Docs & Communication 25

OSU DevOps BootCamp Documentation, Release 0.0.1

Sections of Man

man pages are also organized by section. To read man page for a program/library in a specific section type man #
<program or library> where # is the section number.

For instance:

$ man 2 open # Displays the kernel documentation for open (section 2)
$ man open # Displays the documentation for openvt (section 1)

If there is a collision in man-page naming (like open and open()) man will pick the page which appears in the
lowest-value section.

1. Executable programs or shell commands

2. System calls (function provided by the kernel)

3. Library calls (functions provided from within libraries)

4. Special files (usually found in /dev)

5. Files formats and conventions eg /etc/passwd

6. Games

7. Miscellaneous (including macro packages and conventions), e.g., man(7), groff(7)

8. System administration commands (usually only for root)

9. Kernel routines [Non standard]

Note: Some distros use info instead of man. To learn more about the info command, see Further Reading.

Project Docs

Projects also document themselves beyond the manpage. These can include tutorials, a README, and Q&A. If you
need more information about a tool or a specific answer these docs will probably be your best bet.

These docs may also answer any technical or contributing questions. These docs can be updated more frequently than
local man pages so should also be referred to for bleeding-edge information.

Where to look:

• http://docs.some-random-project.io/

• http://some-random-project.io/docs/

• http://organization.com/some-random-project/

Communication

Communication is very important for DevOps engineers. Whether they are talking to their own team or working either
external projects they use.

26 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

It’s important to be familiar with the chat platforms that these projects use which include:

• Internet Chat Relay (IRC)

• Slack

• Mailing lists

• Discourse

• Forums

IRC

Quick Facts:

• Internet Relay Chat (IRC)

• Very old (RFC 1459, May 1993)

• Works on everything (Terminal, GUI, Web-browser, etc)

• The people you want to listen to are there

• Oregon State ran one of the first servers ever!

Exercise: Getting on IRC

To get on IRC, Use irssi or weechat in screen:

5.4. Lesson 3: Docs & Communication 27

https://xkcd.com/979/

OSU DevOps BootCamp Documentation, Release 0.0.1

This step is optional, but persistent IRC is cool
$ ssh <username>@<a remote linux server>

start screen with the name ’irc’
$ screen -S irc

start your client in the 0th window of the screen session
$ irssi
or
$ weechat-curses

exit irc screen with CTRL+a, CTRL+d
exit ssh session with CTRL+d or ’exit’
to get back to irc:
$ ssh <username>@<preferred shell host>
$ screen -dr IRC

Other IRC Clients

If you’re not interested in using the command line there also an assortment of graphical IRC
clients including Hexchat, MIRC, and KiwiIRC. Look those up if you’re interested in them.

There are also a variety of mobile clients for each
platform that work well enough. You can also use a mobile SSH client and connect to your server in a pitch.

Unfortunately IRC isn’t very mobile friendly.

Connecting and Setup

In the IRC client run these commands (irssi):

/connect irc.freenode.net
/nick <myawesomenickname>
/msg nickserv register <password> <email>
/nick <myawesomenickname>
/msg nickserv identify <password>
/join #devopsbootcamp

For weechat, do the following:

/server add freenode irc.freenode.net
/connect freenode

28 Chapter 5. Donate

https://hexchat.github.io/
https://www.mirc.com/
https://kiwiirc.com/
https://hexchat.github.io/screenshots.html

OSU DevOps BootCamp Documentation, Release 0.0.1

/nick <myawesomenickname>
/msg nickserv register <password> <email>
/nick <myawesomenickname>
/msg nickserv identify <password>
/join #devopsbootcamp

Commands and Tips

Command Description
/list Reports all the channels on a server.
/topic Reports current channel topic.
/names Reports nicks of users in channel.
/join <channel> Join a new channel.
/whois <nick> Learn about a person.
/msg Directly message an individual.
/help <command> Provides help for commands

• Tab-completion works with nicks

• You get a hi-light when your name is said.

• Symbols (@, +) are not part of names, show status in channel.

• chanserv and nickserv are robots.

– /msg nickserv help to get nick help.

– /msg chanserv help to get channel help.

IRC Jargon

Term Description
channel Chat rooms with with ‘#’ prefixed in front of their names
ping/pong ‘I would like to tell you something.’ / ‘I’m here, tell it to me.’
tail ~
hat ‘@’ Denotes admin status in a channel.
nick Your name.
netsplit When the IRC servers lose connection with each other.
kick/ban/k-line Force someone off the channel or server, typically for abuse

Slack

Modern messaging platform which featureful desktop and mobile clients

5.4. Lesson 3: Docs & Communication 29

OSU DevOps BootCamp Documentation, Release 0.0.1

• Launched in 2013 and stands for “Searchable Log of All Conversation and Knowledge”

• Has many IRC like features, with additions such as rich text and emojis

• Propriety platform, however there are several open source “clones” that can be self hosted

• “New kid on the block” – Many new projects prefer Slack over IRC

• Join our Slack team! http://devopsbootcamp.slack.com

Asking for Help

It’s okay to ask for help. Here are some things to keep in mind:

1. Ask yourself what should be happening?

2. Ask yourself what is actually happening?

3. Google the problem(s).

4. Skim the manuals of each component.

5. Identify a friend, mentor, or IRC/Slack channel who could help.

6. When they’re not busy, give them a quick synopsis of points 1 and 2, mentioning what possibilities you’ve ruled
out by doing steps 3 and 4.

Contributions = expertise + time

Further Reading

• About info: info is an alternative to man that some distros use instead.

Next: Lesson 4: Shell Navigation

30 Chapter 5. Donate

http://devopsbootcamp.slack.com
http://www.computerhope.com/unix/info.htm

OSU DevOps BootCamp Documentation, Release 0.0.1

Lesson 4: Shell Navigation

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

The Shell

A shell is a text-based user-interface for a computer.

Shell Examples

sh Required by all POSIX Operating Systems.
bash Default on most GNU/Linux-based Operating Systems.
csh Default shell on most BSD (Unix) based Operating Systems
zsh The hip new shell on the block.
fish Yet another hip new shell on the block.

Navigation Concepts

Basic Shell Commands

Prints the current working directory (where you are)
$ pwd
Prints the contents of the current working directory
$ ls
Navigates to a new directory.
$ cd <path/to/other/directory>
Prints a string to the screen.
$ echo "some thing $AND_VARS"
Prints the contents of a file(s) to the screen.
$ cat foo.txt bax.txt
Searches ‘file.txt‘ for the string ‘foo‘
$ grep foo file.txt
Prints a file to the screen so you can arrow up/down.
$ less file.txt
Prints environment variables to the screen.

5.5. Lesson 4: Shell Navigation 31

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/shell-navigation-os.html
http://slides.osuosl.org/devopsbootcamp/shell-navigation-os.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2
https://en.wikipedia.org/wiki/File:Cypraea-moneta-001.jpg

OSU DevOps BootCamp Documentation, Release 0.0.1

$ env
Prints out current user
$ whoami
When in doubt, always type help.
$ help

Shell Scripts

about_me.sh

#!/bin/sh
if [$(whoami) == "root"]; then

echo "You’re root!"
else

echo "Your username is $(whoami)"
echo "Your home-directory is $HOME"
echo "Your current directory is $PWD"
echo "Your computer’s host-name is $HOSTNAME"

fi

Invoke with:

Tell Linux that this can be run as a program
$ chmod +x about_me.sh
Invoke the script.
$./about_me.sh
Your username is dobc
Your home-directory is /home/dobc
Your current directory is /home/dobc
Your computer’s host-name is dobc

Useful Symbols

$ grep ’searchstring’ files/* | less

$ true || echo ’never gets here’
$ false && echo ’never gets here’

$ echo ’this now an error message’ 1>&2 | grep -v error
this is now an error message

!$ # last argument to last command
$ cat /dir
cat: /dir/: Is a directory
$ cd !$
cd /dir
$ pwd
/dir

More Useful Symbols

$ for x in 1 2 3; do echo $x; done # Use seq for longer sequences
1
2

32 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

3

$ var=’this is a var’; echo ${var//this is } # Deletes ’this is ’
a var

$ ls -l ‘which bash‘
-rwxr-xr-x 1 root root 1029624 Nov 12 15:08 /bin/bash

Combining These Together

$ set -a blocks
$ blocks="10.0.0.0/24"
$ set -a ips
$ ips=‘fping -g 10.0.0.0/24 2>&1 | grep unreachable | tr \\ \\n‘
$ for ip in $ips; do
$ nmap -p 22 $ip && ips=‘echo ${ips//$ip} \

| tr -s \\n‘
$ done
$ echo $ips

Function Definitions

name () {
code goes here
}

Internal Variables

You should know the following:

Variable Meaning
$* All arguments passed
$? Return code of last command run
"$@" All arguments passed as a list
$CDPATH Colon-delimited list of places to look for dirs
$HOME Location of user homedir
$IFS Internal Field Seperator
$OLDPWD Previous PWD

Internal Variables

Variable Meaning
$PATH Colon-delimited list of places to find executables
$PWD Present Working Directory
$SHELL Path to running shell
$UID User ID
$USER Username

You should also read the EXPANSION section of the bash man page.

5.5. Lesson 4: Shell Navigation 33

OSU DevOps BootCamp Documentation, Release 0.0.1

File Paths

. The current directory

.. The parent directory
~ Alias for your home directory
/ Separates directories: one_dir/another_dir/last_dir Alone, or at the start of a path, it is the root

directory.

$ tree -F
.
-- bar/
| -- one/
| -- two
-- baz/
-- foo/

-- a/
-- b

5 directories, 2 files

Special Characters

Wildcard (*) Used as a stand-in for any character(s).

Example: cat *.log cats all files in the current working directory ending in .log.

End of line ($) Used to specify the end of a regex. We’ll cover what regex is later.

Curl braces ({ }) Used to specify a set.

Example: ls {foo,bar,baz}ley-thing expands to ls fooley-thing barley-thing
bazley-thing

Escape special characters (treat them as normal characters) with the escape character (\).

Type Less, Tab More

Pressing the tab key auto-completes a command, file-path, or argument in your shell.

Pressing tab multiple times completes the command to the best of the shells ability and then lists the possible com-
pletions (if there are any).

$ ls b # <tab>
$ ls ba # <tab>
bar_thing/ baz_thing/
$ ls bar # <tab>
$ ls bar_thing

34 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Text Editor: Nano

• User types like normal.

• Arrow keys used to to navigate the cursor.

• ^ + <key> Commands (control + key)

Nano is a great terminal text editor to start with. Later in your career you may start using emacs or vi/vim but to
start with nano is familiar, easy to use, and gets the job done.

To use nano simply execute it like any other command in the terminal.

$ nano # Open with empty file
$ nano <file_name> # Edit a specific file

This editor is almost exactly like any word processor or plain-text editor except that you don’t have a mouse – only
keyboard shortcuts. The instruction bar at the bottom of the screen is explains all of the key-bindings from saving, to
exiting, to cut and pasting.

Bash Hello World

Using nano create a file called hello_world.sh and put the following in it:

#!/bin/bash
declare STRING variable
STRING="Hello World"
print variable on a screen
echo $STRING

Now make the script executable using chmod and run the script. What does it do?

$ chmod +x hello_world.sh
$./hello_world.sh
Hello World

5.5. Lesson 4: Shell Navigation 35

OSU DevOps BootCamp Documentation, Release 0.0.1

Passing arguments to the bash script

When you pass arguments to a bash script, you can reference them inside of the script using $1, $2, etc. This means
if you do something like ‘foo.sh bar‘, $1 will return bar. You can also use $@ to reference all arguments.

For example:

#!/bin/bash
echo $1 # prints argument #1 given to script
echo $@ # prints all arguments given to script

Reading User Input

You can also take input using the read command which then stores it in a variable. If you pass read ‘-a‘, it puts
the input into a bash array.

For example:

#!/bin/bash
echo -e "Tell me a word: \c"
read word
echo "Your word is $word"

$./read.sh
Tell me a word: foo
Your word is foo

Simple Bash if/else statement

Bash conditionals use if, else, then and fi operators. You can compare strings, files and even command output.
An example:

#!/bin/bash
if ["$1" == "foo"] ; then
echo "You said $1"

else
echo "You did not say foo"

fi

$./sayfoo.sh foo
You said foo
$./sayfoo.sh bar
You did not say foo

Exercises: Bash

• Using the tar command, write a script named backup.sh which backs up the dobc user home directory
into a file /tmp/dobc-backup.tar.gz . Hint: use the man page for tar or type ‘tar -h’.

• Create a script called args.sh that takes three arguments and prints all of the args and then prints them in
reverse using echo.

• Create a script named input.sh which takes input for three args and then prints them in a sentence (of your
choosing).

36 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

• Create a script named ifelse.sh which takes two arguments. If both arguments match, print "Yay, they
match!", if they don’t, then print "Boo, they don’t match :(".

Exercise Answer Key

Simple Backup script

#!/bin/bash
The flags for tar do the following:
v - verbose
c - compress
z - use gzip
f - output to file
tar -vczf /tmp/dobc-backup.tar.gz /home/dobc

$./backup.sh
tar: Removing leading ‘/’ from member names
/home/dobc/
/home/dobc/backup.sh
/home/dobc/hello_world.sh
/home/dobc/.bash_profile
/home/dobc/.bashrc
/home/dobc/.bash_logout

Bonus: How could you list the contents of the file?

Passing arguments to the bash script

#!/bin/bash
echo $@
echo $3 $2 $1

$ chmod +x args.sh
$./args.sh DOBC is awesome
DOBC is awesome
awesome is DOBC

Bonus #1: What happens if you give the script nothing? Bonus #2: What happens if you give it the string
“DOBC is awesome” with quotes?

Reading User Input

#!/bin/bash
echo -e "Tell me a noun: \c"
read noun
echo -e "Tell me a verb: \c"
read verb
echo -e "Tell me an adjective: \c"
read adj
echo "I plan to $verb a $adj $noun"

$./input.sh
Tell me a noun: apple
Tell me a verb: eat

5.5. Lesson 4: Shell Navigation 37

OSU DevOps BootCamp Documentation, Release 0.0.1

Tell me an adjective: large
I plan to eat a large apple

Simple Bash if/else statement

#!/bin/bash
if ["$1" == "$2"] ; then

echo "Yay, they match!"
else

echo "Boo, they don’t match :("
fi

$./ifelse.sh foo foo
Yay, they match!
$./ifelse.sh foo bar
Boo, they don’t match :(

Further Reading

BASH Programming - Introduction HOW-TO A free online resource of learning bash programming. Covers some
concepts we’ll get to later in DOBC, but a good resource to have on hand.

Advanced Bash-Scripting Guide An in-depth exploration of the art of shell scripting. Covers more advanced con-
cepts with Bash.

Running rm -rf / on Linux This video demonstrates what happens when you ‘delete your hard-drive’ on Linux. A
fun watch!

Next: Lesson 5: Users, Groups, Permissions

Lesson 5: Users, Groups, Permissions

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

What are users?

You, right now.

$ whoami # your username
$ who # who is logged in?
$ w # who is here and what are they doing?
$ id # user ID, group ID, and groups you’re in

Not just people: Apache, Mailman, ntp. “system users”

38 Chapter 5. Donate

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html
http://tldp.org/LDP/abs/html/
https://youtu.be/D4fzInlyYQo
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/users-groups-permissions.html
http://slides.osuosl.org/devopsbootcamp/users-groups-permissions.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

Users have

• Username

• UID

• Group

• Shell

• Usually (but not always) password

• Usually (but not always) home directory

/etc/passwd:

root:x:0:0:root:/root:/bin/bash
username:password:uid:gid:uid info:home directory:shell

Managing Groups and Users

As someone interacting with servers, even as a developer, it’s necessary to understand how to manage users and groups
on a Linux machine.

To view all user information on a system check the file /etc/passwd:

$ cat /etc/passwd
username:x:UID:GID:GECOS:homedir:shell

To add, delete, and change the password of a user respectively run the following commands:

$ useradd <user_name> # vs adduser, the friendly Ubuntu version
$ userdel <user_name>
$ passwd

What are groups?

To add a group, or the permissions of a user/group run groupmod, usermod, and groupmod respectively. Similarly
to /etc/passwd, /etc/group carries group information.

$ groupadd
$ usermod
$ groupmod
$ cat /etc/group

root:x:0:
daemon:x:1:
bin:x:2:
sys:x:3:

5.6. Lesson 5: Users, Groups, Permissions 39

https://www.xkcd.com/215/

OSU DevOps BootCamp Documentation, Release 0.0.1

adm:x:4:
tty:x:5:

group name:password or placeholder:GID:member,member,member

Users won’t be active in new group until they “log back in”

Passwords

/etc/shadow, not /etc/passwd

user@localhost ~ $ ls -l /etc/ | grep shadow
-rw-r----- 1 root shadow 1503 Nov 12 17:37 shadow

$ sudo su -
$ cat /etc/shadow
daemon:*:15630:0:99999:7:::
bin:*:15630:0:99999:7:::
sys:*:15630:0:99999:7:::
mail:*:15630:0:99999:7:::

name:hash:time last changed: min days between changes: max days
between changes:days to wait before expiry or disabling:day of
account expiry

$ chage # change when a user’s password expires

Root/Superuser

• UID 0

• sudo

40 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Warning: Acting as root is dangerous! You can accidentally delete your filesystem, forcing you to completely
re-install your OS! Type carefully.

Sudo

Consult man 5 sudoers for more information:

User alias specification
User_Alias DOBC_ADMIN = lance, teacher
User_Alias DOBC_STUDENT = john, jane

Runas alias specification
Runas_Alias ADMIN = root, sysadmin
Runas_Alias STUDENT = httpd

Host alias specification
Host_Alias OSU_NET = 128.193.0.0/16
Host_Alias SERVERS = www, db

Cmnd alias specification
Cmnd_Alias KILL = /bin/kill
Cmnd_Alias SU = /bin/su

User privilege specification
root ALL = (ALL) ALL
DOBC_ADMIN ALL = NOPASSWD: ALL
DOBC_STUDENT OSU_NET = (STUDENT) KILL, SU

5.6. Lesson 5: Users, Groups, Permissions 41

https://xkcd.com/149/

OSU DevOps BootCamp Documentation, Release 0.0.1

Acting as another user

$ su joe # become user joe, with THEIR password
$ su # become root, with root’s password
$ sudo su - # become root, with your password
$ sudo su joe # become user joe with your password

A dash after su provides an
environment similar to what the user would expect. Typically a good practice to always use su -

Super users

Trying to run commands which require root permissions as a regular user can be a problem. However, sudo authorizes
you to do commands based on your permissions. For example:

[dobc@dobc ~]$ yum install httpd # Runs command as ‘dobc‘ user.
Loaded plugins: fastestmirror, ovl
ovl: Error while doing RPMdb copy-up:
[Errno 13] Permission denied: ’/var/lib/rpm/__db.002’
You need to be root to perform this command.

[dobc@dobc ~]$ sudo yum install httpd # Runs command as ‘root‘ user.
password:
Loaded plugins: fastestmirror, ovl
[... installs correctly ...]

Exercises

1. Create a user on your system for yourself, with your preferred username.

2. Give your user sudo powers.

3. Change your password.

4. Use su to get into your user account.

5. Create a directory called bootcamp in your home directory.

6. Create a group called devops.

42 Chapter 5. Donate

https://www.xkcd.com/838/

OSU DevOps BootCamp Documentation, Release 0.0.1

Exercise Answer Key

$ sudo su -
$ useradd lance
better to use visudo instead
$ echo "lance ALL = (ALL) ALL" >> /etc/sudoers
$ passwd lance
Changing password for user lance.
New password:
Retype new password:
passwd: all authentication tokens updated successfully.
$ su - lance
$ mkdir bootcamp
$ sudo groupadd devops

We trust you have received the usual lecture from the local System
Administrator. It usually boils down to these three things:

#1) Respect the privacy of others.
#2) Think before you type.
#3) With great power comes great responsibility.

[sudo] password for lance:

Further Reading

• Understanding Linux File Permissions

Next: Lesson 6: Files

Lesson 6: Files

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

What are files?

Everything in Linux is a file... except the things that aren’t.

Files have:

Owner atime, ctime, mtime
Group POSIX ACLs
Permissions Spinlock
Inode i_ino
Size read, write and link count
Filename

$ ls -il
total 8
2884381 drwxrwxr-x 5 test test 4096 Nov 6 11:46 Documents

5.7. Lesson 6: Files 43

https://www.linux.com/learn/understanding-linux-file-permissions
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/files.html
http://slides.osuosl.org/devopsbootcamp/files.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

2629156 -rw-rw-r-- 1 test test 0 Nov 13 14:09 file.txt
2884382 drwxrwxr-x 2 test test 4096 Nov 6 13:22 Pictures

Everything is a file?

Yes. Except the things that aren’t...

This functionality isn’t just limited to the shell! Let’s say you’re programming an interface for a device that streams
data from a sensor. Using the “Everything is a file” philosophy, we could read data from the device like so:

int read_device_data(int device_file_pointer) {
// Open a connection to the device
int * stream = open(device_file_pointer);
// Write the stream of data to the screen
write(STDOUT, stream);
// Do some other stuff with that data
// Close the data stream
close(stream);

return EXIT_SUCCESS;
}

More file metadata

$ ls -l
crw-rw-rw- 1 root tty 5, 0 Jan 6 13:45 /dev/tty
brw-rw---- 1 root disk 8, 0 Dec 21 14:12 /dev/sda
srw-rw-rw- 1 root root 0 Dec 21 14:13 /var/run/acpid.socket
prw------- 1 lance lance 0 Jan 5 17:44 /var/run/screen/S-lance/12138.ramereth
lrwxrwxrwx 1 root root 4 Nov 25 09:26 /var/run -> /run

$ stat /etc/services
File: ‘/etc/services’
Size: 19303 Blocks: 40 IO Block: 4096 regular file

Device: fc00h/64512d Inode: 525111 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2015-01-07 08:22:43.768316048 -0800
Modify: 2012-05-03 09:01:30.934310452 -0700
Change: 2012-05-03 09:01:30.982310456 -0700
Birth: -

File Extensions

.jpg, .txt, .py

Not necessary, more of a recommendation.

File contains information about its encoding

$ ls
some_text_file squirrel

$ file some_text_file
some_text_file: ASCII text

44 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

$ file squirrel
squirrel: JPEG image data, JFIF standard 1.01

Hidden Files

Any file starting with . is called a hidden file and is not listed by default.

Adding the -a flag to ls command includes hidden files in your output.

$ ls
Documents file.txt Pictures

$ ls -a
. .. Documents file.txt .hidden_file Pictures .vimrc

Finding Metadata with ls -l

$ ls -l
drwxrwxr-x 5 test test 4096 Nov 6 11:46 Documents
-rw-rw-r-- 1 test test 0 Nov 13 14:09 file.txt
drwxrwxr-x 2 test test 4096 Nov 6 13:22 Pictures
---------- - ---- ---- ---- ------------ --------------

| | | | | | |
| | | | | | File Name
| | | | | +--- Modification Time
| | | | +------------- Size (in bytes)
| | | +----------------------- Group
| | +-------------------------------- Owner
| +------------------------------------- References Count
+-- File Permissions

& Type

Editing Metadata

You can edit the metadata of a file with various commands, but some of the most useful commands are chown,
chmod, and chgrp commands. These commands allow you to edit the owner, the read/write/execute, and the group
permissions of a file respectively.

Change the owner of myfile to "root".
$ chown root myfile

Change the owner of myfile to "root" and group to "staff".
$ chown root:staff myfile

Change the owner of /mydir and subfiles to "root".
$ chown -hR root /mydir

Make the group devops own the bootcamp dir
$ chgrp -R devops /home/$yourusername/bootcamp

5.7. Lesson 6: Files 45

OSU DevOps BootCamp Documentation, Release 0.0.1

chmod and Octal Permissions

+-----+--------+-------+
| rwx | Binary | Octal |
+-----+--------+-------+
---	000	0
--x	001	1
-w-	010	2
-wx	011	3
r--	100	4
r-x	101	5
rw-	110	6
rwx	111	7
+-----+--------+-------+

• u, g, o for user, group, other

• -, +, = for remove, add, set

• r, w, x for read, write, execute

Example:

$ chmod ug+x my_script.sh
Adds the permission to execute the file to its
owner user and owner group.

$ chmod o-w myfile.txt
Removes the permission to write to the file
from users other than its owners.

Executing a File?

For instance:

$ ls -lh my-script
-r-xr-xr-x 1 username username 1.9K Sep 27 09:44 my-script

$ cat my-script
#!/bin/bash
The above line tells Linux how to invoke the script on my behalf.
echo ’This is a script being run without using bash!’

$./my-script # my-script is invoked just like a compiled binary!
This is a script being run without using bash!

Types of Files

• - is a normal file

• d is a directory

• b is a block device

• l is a symlink

46 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Directories

Directories are also files!

• +r allows you to read the contents of the directory.

• +w allows you to add files to the directory.

• +x allows you to use the directory at all.

$ ls -alh | grep foobarbaz
drw-rw-rw- 2 voigte voigte 4.0K Sep 29 10:47 foobarbaz

Below is the literal output, not pseudo-output
$ ls -alh foobarbaz
ls: cannot access foobarbaz/.: Permission denied
ls: cannot access foobarbaz/..: Permission denied
total 0
d????????? ? ? ? ? ? .
d????????? ? ? ? ? ? ..

Exercise: Messing with Files

create empty file called foo
$ touch foo

• Create an empty file in /home/dobc/bootcamp.

• Who can do what to the file?

• Change the group to devops.

• Make a file called allperms and give user, group, and world +rwx.

• Make more files and practice changing their permissions.

Exercise Answer Key

$ touch bootcamp/emptyfile
$ ls -alh bootcamp/emptyfile
-rw-rw-r-- 1 dobc dobc 0 Nov 3 22:38 bootcamp/emptyfile
You may need to create the devops group.
$ sudo chown dobc:devops bootcamp/emptyfile
Alternatively, you can also do the following
$ sudo chgrp devops bootcamp/emptyfile
$ touch allperms
$ chmod ugo+rwx allperms
$ ls -l allperms
-rwxrwxrwx 1 dobc dobc 0 Nov 3 22:39 allperms

Bonus: What’s another way of giving a file all permissions?

Further Reading

• Permission Mishaps

• Access the Linux kernel using the /proc filesytem

5.7. Lesson 6: Files 47

http://serverfault.com/questions/93752/linux-permission-when-things-go-wrong-mishaps-gotchas-for-newbies/93759
http://www.ibm.com/developerworks/library/l-proc/index.html

OSU DevOps BootCamp Documentation, Release 0.0.1

Next: Lesson 7: Packages, Software, Libraries

Lesson 7: Packages, Software, Libraries

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Software

Everything that isn’t hardware.

• Code that is run on a Computer.

• Binaries.

• Scripts.

• Packages

Libraries

• Often used to make development easier.

• Rarely run on it’s own.

• Shared code.

• Binaries are linked dynamically to libraries (kind of like DLL’s in Windows)

$ ldd /usr/bin/nano
linux-vdso.so.1 => (0x00007ffc1fdcd000)
libncursesw.so.5 => /lib64/libncursesw.so.5 (0x00007ff2cfaee000)
libtinfo.so.5 => /lib64/libtinfo.so.5 (0x00007ff2cf8c4000)
libc.so.6 => /lib64/libc.so.6 (0x00007ff2cf500000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007ff2cf2fc000)
/lib64/ld-linux-x86-64.so.2 (0x000055e46c4b4000)

Package Management

• Automagically manage software and libraries on your system.

• Examples:

– Android Play Store

– Apple App store

– Steam

– apt (Debian/Ubuntu)

– yum (CentOS/Fedora/RHEL)

48 Chapter 5. Donate

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/packages-software-libraries.html
http://slides.osuosl.org/devopsbootcamp/packages-software-libraries.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

Package Management

Take care of installation and removal of software

Popular Linux System Package Managers

.rpm

• yum - RPM Package manager with repo support

• rpm - low level package manager tool used by yum

• Used by RedHat, CentOS, Fedora and others

.deb

• apt - Debian package manager with repo support

• dpkg - low level package manager tool used by apt

• Used by Debian, Ubuntu, Linux Mint and others

Yum vs. Apt

Yum

• XML repository format

• Automatic metadata syncing

• Supports a plugin module system to make it extensible

• Checks all dependencies before downloading

Apt

• Upgrade and Dist-Upgrade

– Dist-Upgrade applies intelligent upgrading decisions during a major system upgrade

• Can completely remove all files including config files

Programming Language Package Managers

Examples:

• Python: pip

• Ruby: gem, rubygems

• Haskell: cabal

• NodeJS: npm

• ... and so on forever ...

5.8. Lesson 7: Packages, Software, Libraries 49

OSU DevOps BootCamp Documentation, Release 0.0.1

Other Package Managers

Portage The Source-based package manager for Gentoo.

Pacman The Simple Arch Linux Package manager.

Nix A ‘Fully Functional/Transactional’ package manager.

Brew An Open Source package manager for OSX.

Chocolatey A package manager for Windows.

Installation from Source

How to install a package from source:

Exercise: Install sl

1. Install the git, gcc, make and ncurses-devel packages via package manager.

2. Clone https://github.com/mtoyoda/sl.git using git

3. Build the software using make

4. Copy the compiled sl binary into the directory ~/local/bin/.

5. Update your $PATH to include $HOME/local/bin

6. Run ‘whereis sl‘ to ensure it’s in your path

7. Run sl and see what happens!

Answer: Install sl

$ sudo yum install git gcc make ncurses-devel
$ git clone https://github.com/mtoyoda/sl.git
$ cd sl
$ make
gcc -O -o sl sl.c -lncurses
$ mkdir -p ~/local/bin
$ cp sl ~/local/bin/
$ echo "export PATH=$HOME/local/bin:$PATH" >> ~/.bashrc
$ source ~/.bashrc
$ whereis sl
sl: /home/dobc/local/bin/sl
$ sl

Exercise: Install grep

1. Check the current version of grep

2. Double check it’s location using which

3. Download the latest tarball: http://mirrors.kernel.org/gnu/grep/grep-3.1.tar.xz

4. Unpack using tar

5. cd into the unpacked folder

50 Chapter 5. Donate

https://github.com/mtoyoda/sl.git
http://mirrors.kernel.org/gnu/grep/grep-3.1.tar.xz

OSU DevOps BootCamp Documentation, Release 0.0.1

6. Run ‘./configure --prefix=$HOME/local/‘, ‘make‘ and then ‘make install‘

7. Run ‘hash -r‘ to ensure your environment knows about the new binary

8. Check the current version of grep (it should be 3.1 now!)

9. Double check it’s location using which

Answer: Install grep

$ grep --version
grep (GNU grep) 2.20
$ which grep
alias grep=’grep --color=auto’

/usr/bin/grep
$ wget http://mirrors.kernel.org/gnu/grep/grep-3.1.tar.xz
$ tar -Jxvf grep-3.1.tar.xz
$ cd grep-3.1
$./configure --prefix=$HOME/local/
$ make
$ make install
$ hash -r
$ grep --version
grep (GNU grep) 3.1
$ which grep
alias grep=’grep --color=auto’

~/local/bin/grep

Further Reading

Lesson 8: Version Control

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Version Control Systems

VCS is how one tracks changes, modifications, and updates to source files over time. Creating a history of changes
for a project over time.

Used for:

• Documentation

• Code

• Configuration

• Collaboration

Other Names Include:

• Source Control Management (SCM)

5.9. Lesson 8: Version Control 51

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/version-control.html
http://slides.osuosl.org/devopsbootcamp/version-control.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

• Version Control Software

• Revision Control Software

What VCS Solves

Version control solves a lot of problems:

• I have changes I want to integrate (merge) into the main project.

• I want to track the state of this project over time.

• I want to make some changes without possibly breaking what I have.

• ... and much more.

Principles of VCS

Types of VCS

Git

Git is a Free and Open Source distributed version control system designed to handle everything from small
to very large projects with speed and efficiency. (https://git-scm.com)

Setting up Git

$ git config --global user.name "My Name"
$ git config --global user.email "myself@gmail.com"
$ git config --global core.editor "nano"

TODO: Use Git Locally

Create a project with Git:

52 Chapter 5. Donate

http://www.phdcomics.com/comics/archive.php?comicid=1531
https://git-scm.com
https://commons.wikimedia.org/wiki/File:Git-logo.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

$ mkdir my-project
$ cd my-project # Always run ‘git init‘ inside of a project folder!
$ git init # Never inside of your home directory.

Add and commit a file to your project with Git:

$ touch newfile.txt
$ git add newfile.txt
$ git commit # Edit message in Nano, save the file, exit to commit.

To see which files are staged, unstaged, or untracked:

$ git status

To look through your repository history:

$ git log

To create and checkout a branch:

#Note the ‘*‘ which indicates the current branch
$ git checkout -b "new-branch"
$ git branch
master

* new-branch

TODO: Working With a Git Repository

Checkout a new feature branch on your repository.

$ git checkout -b "add-awesome-feature"

Create/Edit files on the new branch.

$ echo "Some awesome text" > awesomefile.txt
$ git status
On branch add-awesome-feature
Untracked files:
...
awesomefile.txt
...

$ git add awesomefile.txt
$ git commit -m "Short awesome commit message"

View the diff between the two.

$ git diff master
diff --git a/awesomefile.txt b/awesomefile.txt
new file mode 100644
index 0000000..08cec7f
--- /dev/null
+++ b/awesomefile.txt
@@ -0,0 +1 @@
+Some awesome text

Locally merge the changes from your new branch into Master.

5.9. Lesson 8: Version Control 53

OSU DevOps BootCamp Documentation, Release 0.0.1

$ git checkout master
$ git merge add-awesome-feature
Updating 459de26..5c4ca48
Fast-forward
awesomefile.txt | 1 +
1 file changed, 1 insertion(+)
create mode 100644 awesomefile.txt

What not to do with Git

Workflow(s)

Everybody uses VCS differently. Choose the workflow that works best for everybody involved.

Centralizing Git

Gitlab Open Source, free to run, feature rich.

Github Very popular. Not Open Source but free for Open Source projects.

Bitbucket Also popular, similar to Github, unlimited free private and public repositories.

Gitolite Bare-bones. Fewer features than the previous three. Open Source, useful for learning the nitty-gritty on how
Git really works.

54 Chapter 5. Donate

http://nvie.com/posts/a-successful-git-branching-model/

OSU DevOps BootCamp Documentation, Release 0.0.1

Cloning a Repository

To contribute to someone else’s repository you first need to clone the repo.

$ cd /path/to/my/projects
$ git clone <some git url>
$ cd <new repo directory>
$ ls

Once you clone a repository you can make as many local changes as you want without affecting the original (central)
copy. You can experiment and work without the original owner even knowing what you’re doing!

TODO: Cloning Exercise

$ cd ~
$ git clone https://github.com/DevOpsBootcamp/tinsy-flask-app.git
$ cd tinsy-flask-app

See http://git.io/vcVmB for more details about the tinsy-flask-app repository.

#Setup python virtual environment
$ virtualenv venv
$ source venv/bin/activate
(venv) $ pip install -r requirements.txt
#Run server
(venv) $ python script.py
#When finished, deactivate virtual environment
(venv) $ deactivate
$

Further Reading

The Online Git Docs This is a portal to all of the official docs on git-scm.com. It includes everything from Getting
Started to Git Internals. Check it out!

Git workflow tutorial This is the tutorial provided on https://git-scm.com/about/distributed. It is a good high-level
overview of some common git workflows.

A successful Git branching model This blogpost describes a git workflow (git-flow) that the Open Source Lab bases
their workflow on.

Lesson 9: Programming

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Paradigms

Programming is a big topic.

5.10. Lesson 9: Programming 55

http://git.io/vcVmB
https://git-scm.com/doc
https://git-scm.com
https://git-scm.com/about/distributed
https://git-scm.com/about/distributed
http://nvie.com/posts/a-successful-git-branching-model/
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/programming.html
http://slides.osuosl.org/devopsbootcamp/programming.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2
https://www.tenor.co/view/big-huge-large-billnye-gif-4824554

OSU DevOps BootCamp Documentation, Release 0.0.1

Note: Pseudo-code

function f(x):
This line is a comment, not run by the computer.
Comments are only for human eyes.
if x is less than than 5

print "x is less than 5"
else if x is less than than 10

print "x is greater than five and less than 10"
else

print "x is greater than 10"

Variables & Constants

>>> x = "value"
>>> print(x)
value
>>> x = "different value"
>>> print(x)
different value

Data Types

Data types dictate how a piece of data should be handled within a program.

Flow Control

Flow Control allows you to execute code only if certain conditions are met.

Conditionals: If / Else If / Else Conditionals are used to tell the program when to execute commands.

In pseudocode, they usually look something like

if some conditional statement is true
do something

else if some other conditional
do something else

else
do a final thing

Loops: For / While / Do While Loops are used to do multiple things, usually an indefinite number of things.

For instance:

for every element, let’s call it "foo", in a list "my_list"
if foo is greater than five

print(foo)
else

print(foo + " is too small")

While loops execute indefinitely (while something continues to be true).

For loops iterate over a list (array) of elements or to a specific number.

56 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Input & Output

>>> user_input = get_input("Where would you like to go today? ")
>>> -> Where would you like to go today? Nebraska
>>> print(user_input)
>>> -> nebraska
>>> print(reverse(user_input))
>>> -> aksarben

Functions

function read_file(x):
Also check that it exists! How convenient!
if file_exists(x)

v = read_file_to_string(x)
return v

else
print("file does not exist")
return Null

Structs

struct dog {
breed: String
height: Float
color: String
age: Integer

}

spot = struct dog # Create a new variable of type ‘struct dog‘
spot.breed = "corgie" # Assign each member a variable.
spot.height = 1.5
spot.color = "Blond"
spot.age = 1
print(spot.breed, spot.height, spot.color, spot.age)

Objects

class chair():
function init(material):

self.material = material

function rock():
print("The ", self.material, " chair rocks slowly.")

>>> my_chair = chair.init("plastic")
>>> my_chair.rock()
>>> -> The plastic chair rocks slowly.

5.10. Lesson 9: Programming 57

OSU DevOps BootCamp Documentation, Release 0.0.1

Libraries

import math_lib

print(math_lib.pi, math_lib.pow(2, 5), math_lib.tan(79.3))
prints out "3.14 32 .951"

TODO: Write Pseudo-Code

Write pseudo-code to do the following tasks:

• Count to 20 (hint: for loop).

• Get user input and print it.

• Generate prime numbers.

Hints:

• Break the problem down to the simplest steps.

• Don’t worry about the details.

• This is pseudo-code! Get creative.

Python

$ sudo <apt or yum> install python

Python Datatypes

• You don’t need to declare the type of your variables, Python will assume the type of your variable and type it
for you.

58 Chapter 5. Donate

http://python.org

OSU DevOps BootCamp Documentation, Release 0.0.1

• Python is a duckly-typed language. If it walks like a duck and quacks like a duck, then Python treats it like a
duck. As long as an object implements the proper interfaces, it can act like any type it wants.

Type Example
boolean True
integer 7
long 18,446,744,073,709,551,615
float 12.4
string "Hello World!"
list [’first’, ’second’]
dict (map) {’key1’: ’value’, ’key2’, ’value2’}
tuple (’value’,’paired value’)
object anObjects.variable == <value>
None

Python Variables

This is a comment
boolean = True # boolean
name = "Lucy" # string
age = 20 # integer
pi = 3.14159 # float
alphabet = [’a’, ’b’, ’c’]
dictionary = {"pi":3.14159, "sqrt 1":1}
winter = (’December’, ’January’, ’February’, ’March’)

print(name + " is " + str(age+1) + " this " winter[3])

REPL: Try it out

Open a REPL (Read Evaluate Print Loop):

$ python
>>> print("I’m in a REPL!")
>>> name = # <Your name>
>>> age = # <Your age>
>>> print(name + " is " + str(age))
>>> # We need to convert age from int to string so it can print!

Python Control Flow

if name == "Lucy":
for month in winter:

print name + " doesn’t like " + month
else:

print "My name isn’t Lucy!"

5.10. Lesson 9: Programming 59

OSU DevOps BootCamp Documentation, Release 0.0.1

Python Functions

def myfunction(arg1, arg2):
return arg1 + arg2

print myfunction(1, 5)

Python Libraries

There are a few ways to use other code in your code:

from math import pi
x = pi

from math import *
x = pi

There are hundreds of Python libraries. If you’re trying to do something and think “This has probably been solved...”,
Google it!

Some libraries to know:

• sys

• os

• dateutil

• future

60 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

• And more

Python (Virtual) Environments

$ sudo apt-get install python-virtualenv
$ sudo yum install

In each project you work on, you’ll want to run
$ virtualenv venv
$ source venv/bin/activate
(venv)$ pip install <package>
(venv)$ deactivate

TODO: Practicing Python

Formalize the last TODO by writing them in Python.

Prove the program works by running the code!

Further Reading

Python on Learnpython.org The Python programming language’s website offers some good (free) tutorials and ref-
erence documentation.

Python on Codecademy Codecademy is a great resource for learning many programming languages and offers a
good (free) beginner’s guide to Python.

CS 160, 161, 162 These OSU courses focus on programming fundamentals covered in this lesson in greater detail.
Python is used in CS 160 and C/C++ is used in CS 161 and CS 162.

5.10. Lesson 9: Programming 61

https://wiki.python.org/moin/UsefulModules
http://www.learnpython.org/
https://www.codecademy.com/learn/python
http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=160
http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=161
http://catalog.oregonstate.edu/CourseDetail.aspx?subjectcode=CS&coursenumber=162

OSU DevOps BootCamp Documentation, Release 0.0.1

Lesson 10: Frameworks

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Frameworks

Frameworks are collections of classes, functions, and constants designed to make completing a task easier.

Types of frameworks include:

• Web frameworks

• Game frameworks

• GUI frameworks

The job of a framework

To take care of the boring stuff.

Why and When to use a Framework

Use a framework if you are making a cookie cutter application.

If a framework exists for what you’re doing, consider using it.

Looking for Frameworks

Things to keep in mind when looking for a framework:

• Good frameworks usually have:

– Good documentation

– Active developers

– A helpful community

62 Chapter 5. Donate

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/frameworks.html
http://slides.osuosl.org/devopsbootcamp/frameworks.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

Web Frameworks

Static vs Dynamic Sites

There are two types of websites: Static and Dynamic.

Static Site Rarely changes, looks the same for all visitors (Blog, News, Document)

Dynamic Site Changes based on who you are and what you do. (Search Engine, Login)

Popular Web Frameworks

Python

Django Offers many feature out of the box: Admin page, easy database management, simple templating, con-
venient URL routing. Well documented too.

Flask Sparsely featured, offers very little out of the box and lets you build up the features you need. Well
supported with community libraries and add-ons.

Ruby

Rails Arguably the most popular web-framework out there. Similar to Django in it’s features out of the box.

Sinatra Analogous to Flask on the Python side, very simple and easy to start with, encourages building up the
features you need.

Node.js

ExpressJS A bare-bones NodeJS application, similar again to Flask.

5.11. Lesson 10: Frameworks 63

http://flask.pocoo.org/
https://www.djangoproject.com/
http://flask.pocoo.org/
http://rubyonrails.org/
http://www.sinatrarb.com/
http://expressjs.com/

OSU DevOps BootCamp Documentation, Release 0.0.1

The Model-View-Controller Pattern

URL Routing

@app.route(’/accounts/<account_name>’, methods=[’DELETE’])
def delete_account(account_name):

if authenticated() and authorized():
database.remove_account(account_name)
return ’Success’, 200

64 Chapter 5. Donate

https://commons.wikimedia.org/wiki/File:MVC-Process.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

else
return ’Failure’, 401

Templating Engines (mad-libs!)

<!DOCTYPE HTML>
<html>

<head>
<title>Template Example</title>

</head>

<body>
<p>Your lucky number today is {{ number }}!</p>

</body>

</html>

render_template("template.html", number=random.randint(0, 99))

Your lucky number today is 42!

...
<body>
{% for message in messages %}

<p>{{ message }}</p>
{% endfor %}
</body>
...

messages = ["Welcome!", "Test Message", "Vim > Emacs"]

render_template("template2.html", messages=messages)

Welcome!
Test Message
Vim > Emacs

HTTP

GET http://web.site/page.html HTTP/1.1

HTTP/1.1 200 OK
Content-Type: text/html
...
<!DOCTYPE HTML>
...

HTTP Methods

REST

• Servers are stateless

• Resources are self-contained

5.11. Lesson 10: Frameworks 65

OSU DevOps BootCamp Documentation, Release 0.0.1

• HTTP methods have predictable side-effects

TODO: Dynamic Website

Part One: Writing The Views

Part Two: Writing The Templates

Further Reading

The Flask Microframework Flask is a web framework that is simple enough for beginners to use but configurable
enough to allow more advanced users to have full control over their application. It has a very active community
and fantastic documentation.

Intro to HTTP and REST HTTP is the protocol that web clients and web servers use to communicate with each
other, and REST is a set of web design guidelines that is takes advantage of HTTP’s features and allows different
applications to easily communicate with each other.

Lesson 11: Testing

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Testing

def add_double(x, y):
return 2*(x+y)

def test_add_double():
expect(add_double(1, 2) == 6)

66 Chapter 5. Donate

http://flask.pocoo.org/docs/0.12/
http://blog.luisrei.com/articles/rest.html
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/testing.html
http://slides.osuosl.org/devopsbootcamp/testing.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

Why Testing Matters

Structure of a Test

Most tests consist of the same general structure:

Types of Testing

Concept: Mocking

Simulating behavior external to a program so your tests can run independently of other platforms.

You’re testing your program, not somebody else’s. Mock other people’s stuff, not your own.

Testing Frameworks

$ run tests
Finding tests...
Running tests in tests/foo.ext
Running tests in tests/bar.ext
Running tests in misc/test_baz.ext

5.12. Lesson 11: Testing 67

OSU DevOps BootCamp Documentation, Release 0.0.1

Frameworks vs ‘The Hard Way’

While you can write tests the hard way:

var = some_function(x)
if var == expected_output:

continue
else

print("Test X failed!")

$ run test
Test 5 failed!

It’s usually easier to use a framework.

def simple_test():
expect(some_function(x), expected_output)

$ run tests
....x.....
Test 5 failed.
Debug information:
...

Teardown and Setup

Useful for:

• populating a test database

• writing and deleting files

• or anything else you want!

def tests_setup():
connect to database
populate database with test data

def tests_teardown():
delete all data from test database
disconnect from database

def some_test()
setup is called automatically
use data in database
assert something is true
teardown is run automatically

TODO: Using Python’s unittest

Let’s suppose that we want to add a new view to the Flask app we created in the Frameworks lesson’s TODO. When
the user enters the url /hello/<name>, where “name” is any string of the user’s choice, the view should return “Hello
<name>!!” BEFORE you actually write this view, write a test that will test the desired functionality first– i.e., test that
your hello.py returns “Hello bob!!” when “bob” is provided as the name variable. AFTERWARDS, implement the
actual view to make your test(s) pass.

Unittesting in Flask Check out the official Flask docs for help with syntax.

68 Chapter 5. Donate

http://flask.pocoo.org/docs/0.12/testing/

OSU DevOps BootCamp Documentation, Release 0.0.1

Further Reading

CS 362 This OSU Course covers testing very in depth and even covers types of testing including Random testing and
testing analysis.

Python Unittest Documentation A good reference for using Python’s built-in unit-testing module.

Lesson 12: Continuous Integration

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Continuous Integration

Continuous Integration is a name for any kind of automated tool that performs the following tasks:

1. Detects changes to your project

2. Runs a suite of tests on the changed code

3. Alerts the people that care if something good/bad happened

5.13. Lesson 12: Continuous Integration 69

https://docs.python.org/2/library/unittest.html
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/continuous-integration.html
http://slides.osuosl.org/devopsbootcamp/continuous-integration.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2
http://www.agilenutshell.com/continuous_integration

OSU DevOps BootCamp Documentation, Release 0.0.1

Automated Testing

Tool: Travis CI

Travis CI is very popular among Github users because it is easy to setup with Github projects and integrates well
with Github workflows. It’s also free for Open Source projects, although the service itself is not Open Source.

Runs test suites for:

• C / C++

• Java

• Javascript

• Python

• Ruby

• Many more on the Travis CI docs!

Tool: Jenkins

Jenkins is a more powerful version of Travis, but as a result is more complicated to use and set up. While you can pay
to use a public instance of Jenkins, it is more common to run your own instance of Jenkins.

• Does pretty much anything you can tell a computer to do, automatically.

• Builds and uploads binaries (releases).

70 Chapter 5. Donate

https://travis-ci.org
https://docs.travis-ci.com/

OSU DevOps BootCamp Documentation, Release 0.0.1

• Runs tests.

• Reports build successes/failures.

• Also has plugins!

TODO: Setup Travis on a GH Repo

Further Reading

Jenkins Documentation The Jenkins project documentation. If you need a broad overview read the Getting Started
with... docs.

TravisCI Documentation If you end up working on a large project on GitHub you’re going to interface with TravisCI
sooner or later.

CircleCI Documentation CircleCI is a tool we didn’t get to touch on. It is very similar to Travis.

Lesson 13: Security

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Security

se·cu·ri·ty (sikyooritē/) [noun] The state of being free from danger or threat.

The safety of a state or organization against criminal activity such as terrorism, theft, or espionage.

Types of Security

There are three main types of security in computing:

Physical Security Use physical barriers to prevent unauthorized access to data

Software Security Fix flaws in your application that could grant attackers unwanted levels of access to your systems

Network Security Security pertaining to networked services (websites, databases, etc).

5.14. Lesson 13: Security 71

https://jenkins.io/doc/
https://docs.travis-ci.com/
https://circleci.com/docs/
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/security.html
http://slides.osuosl.org/devopsbootcamp/security.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2
https://xkcd.com/416/

OSU DevOps BootCamp Documentation, Release 0.0.1

• Active: in which an intruder initiates commands to disrupt the network’s normal operation (Denial-of-
Service, Ping of Death)

• Passive: a network intruder intercepts data traveling through the network. (Man-in-the-Middle, Wiretap-
ping, Idle Scan)

Each of these encompasses a field of computer security unto itself. We will at least mention each of them in more
detail, but we will focus on network security in this course.

Threat Models

Threat models allow you to focus and limit your security resources on what is necessary instead of what is possible.

Threat models are the assessment of which attacker you are protecting against. This is so you don’t spend too much
time in a panic attack trying to protect your tiny webapp from the NSA.

Access Control

• Identification: Who is this person?

• Authentication: Is this person who they say they are?

• Authorization: Is this person allowed to perform this action?

Access Control is a framework for controlling who has access to what resources on a system. There are many ways
to implement Access Control, but the three basic principles of Access Control are Identification, Authentication, and
Authorization.

Passwords / Passphrases

Problems with Passwords

Passwords are a necessary part of security. They aren’t great though for a few reasons.

• People repeat passwords.

• Many passwords are easy to guess.

• Passwords are hard to remember.

72 Chapter 5. Donate

https://xkcd.com/1121/

OSU DevOps BootCamp Documentation, Release 0.0.1

Solutions for Passwords

Choosing Pass-phrases

Relevant funny bash.org post

Certificates and HTTPS

5.14. Lesson 13: Security 73

http://bash.org/?244321
https://xkcd.com/936/

OSU DevOps BootCamp Documentation, Release 0.0.1

Types of Attacks

Code Injection

Code Injection is the act of inserting code into a running process (website, webapp, word processor, etc.) with mali-
cious intention.

Code Injection Attacks

SQL Injection: SQL Injection is when you take advantage of the fact that a form input is inserted directly into a SQL
query. You write some password and then write a new SQL query which drops all tables, or returns all data,

74 Chapter 5. Donate

https://xkcd.com/327/

OSU DevOps BootCamp Documentation, Release 0.0.1

exploiting an easy security hole.

+-----------+--+
| username: | admin |
+-----------+--+
| password: | pass’ || true); DROP TABLE STUDENTS;-- |
+-----------+--+

Cross-Site Scripting (XSS): Cross-Site Scripting is when a malicious script is sent to, and run on, a person’s com-
puter. This tends to take advantage of the fact that your browser blindly runs any JavaScript you tell it to.

Cross-Site Request Forgery (CSRF): CSRF is when one website on your browser tries to carry out an action as
you on a different website. For instance you’re an admin of some big social media website, you get an email,
embedded in the email is a CSRF script which tries to delete all user accounts on your website. Since you’ve
got your credentials cached your browser doesn’t know better and can run that command because it looks like
any other command.

Code Injection Defenses

• Sanitize User Inputs

• Use CSRF Tokens

Some of these attacks are very hard to fight against, but they all have industry-tested solutions that are easy enough to
implement in an application of your own.

Sanitize Inputs Input sanitation is when your code sniffs a piece of input to see if it looks like a SQL or code of any
kind. If it does look like code it’s probably malicious so your program errors out and tells the user to enter a real
input.

CSRF Tokens A CSRF token is a unique string that has to be tied to each request you send to a server. You don’t
need to log back in each time you get a new one but the application won’t complete your action unless the token
is included in your query. This means only the website you’re logged into can send a real query because only
that website knows the CSRF token.

5.14. Lesson 13: Security 75

OSU DevOps BootCamp Documentation, Release 0.0.1

Web Server Attacks

Web Server attacks take advantage in vulnerabilities of specific versions or default configurations of webservers.

Discovering Vulnerabilities

1. Test and document the bug to verify it exists. If you think you encountered a bug, make sure you can repli-
cate it. If you can’t how can you expect the developers to recreate it?

2. Disclose it privately to those responsible for fixing it. Provide examples – it’s basically a bug report, but
through private channels (not public tracker yet!)

3. Give them time to release a patch before announcing it. Google waits 90 days to announce a bug after in-
forming the developers.

Further Reading

codebashing.com/sql_demo Try your hand at actual SQL Injection attacks

OverTheWire Wargames Learn the basics of offensive security by solving challenges and using exploits to gain
access to the password for the next level.

Lesson 14: Databases

Homepage Content Slides Video

76 Chapter 5. Donate

http://news.netcraft.com/wp-content/uploads/2014/02/apache-vulns1.png
http://www.codebashing.com/sql_demo
http://overthewire.org/wargames/
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/databases.html
http://slides.osuosl.org/devopsbootcamp/databases.html

OSU DevOps BootCamp Documentation, Release 0.0.1

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Databases

Relating Data

Imagine a kitchen cupboard program that stores food currently in stock, where it is, recipes using it,
expiration dates, etc.

Databases and Structure

Structure SQL databases are based on around Relational Algebra

<Table 1>
+---------------+-----------+-----------+
| <Primary key> | <Field 1> | <Field 2> |
+---------------+-----------+-----------+
| 1 | value | value‘ |
| ... | ... | ... |
+---------------+-----------+-----------+

<Table 2>
+---------------+-----------+--------------------------+
| <Primary key> | <Field 1> | <Foreign key to Table 1> |
+---------------+-----------+--------------------------+
| 1 | val | 7 |
| ... | ... | ... |
+---------------+-----------+--------------------------+

Concept: Relational Algebra

<Table 1>
+------------------+------------------+
| <Name> | <Major> |
+------------------+------------------+
| Linus Torvalds | Computer Science |
| Richard Stallman | Computer Science |
+------------------+------------------+
<Table 2>
+------------------+--------------+----------------+
| <Major> | <School> | <Advisor Name> |
+------------------+--------------+----------------+
| Computer Science | Engineering | Dennis Ritchie |
+------------------+--------------+----------------+
<Table 1> JOIN <Table 2>
+------------------+------------------+-------------+----------------+
| <Name> | <Major> | <School> | <Advisor Name> |
+------------------+------------------+-------------+----------------+
| Linus Torvalds | Computer Science | Engineering | Dennis Ritchie |
| Richard Stallman | Computer Science | Engineering | Dennis Ritchie |
+------------------+------------------+-------------+----------------+

5.15. Lesson 14: Databases 77

https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

When to use a Database

When you have to work with a lot of well structured data.

Databases are useful for two situations:

1. Lots of data.

2. High throughput.

78 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Lots of Data

Note: 1 PB = 1,000,000 GB

Concurrent Read/Writes

Atomicity: Either the entire transaction succeeds or it fails completely

Consistency: Transactions always leave the database in a valid state

Isolation: Concurrent operations look like they took place sequentially

Durability: Transactions are permanent after they’re committed

When not to use a Database

Databases might not be particularly useful for:

• Storing content for a website that rarely updates

– Alternative: Use a static site generator such as Pelican or Jekyll

• Hosting large individual files

– Alternative: Store the files on disk

5.15. Lesson 14: Databases 79

OSU DevOps BootCamp Documentation, Release 0.0.1

Types of Databases

There are two broad types of databases.

• SQL: Stores data in tables organized by column and field.

• NoSQL: Stores data differently than an SQL database.

• NewSQL: A middle-ground between SQL and NoSQL

SQL

Examples:

• MySQL/MariaDB

• PostgreSQL

• SQLite

NoSQL

Examples:

• MongoDB

• Apache Casandra

• Dynamo

• Redis

Database Concepts

Schemas

Schemas are how you define what a table looks like, what data will populate it, and what each field will be called. The
schema also defines relationships between tables; more or less the blueprint of your database.

CREATE TABLE nobel (
id int(11)

NOT NULL
AUTO_INCREMENT,

yr int(11),
subject varchar(15),
winner varchar(50)

)
ENGINE = InnoDB;

Migrations

Migrations are the process of updating tables and fields in your database. Since databases might need to change in the
future (you never know!) you can create and run a migrations to modify your schema as needed.

80 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

from django.db import migrations, models

class Migration(migrations.Migration):
dependencies = [

(’app’, ’0001_initial’)
]

operations = [
migrations.AddField("Nobel", "topic", models.CharField(80))

]

Raw SQL Syntax

There are many tools out there that allow you to avoid writing raw SQL, but it’s always good to know the syntax. One
day you may need to write raw SQL queries, and at the very least you’ll need to read SQL for debugging purposes.

SELECT

Select statements get data from the database which matches the requirements you have.

SELECT
yr, subject, winner

FROM
nobel

WHERE
yr = 1960 AND subject=’medicine’;

+------+------------+-------------------------------+
| yr | subject | winner |
+------+------------+-------------------------------+
| 1960 | "medicine" | "Sir Frank Macfarlane Burnet" |
| 1960 | "medicine" | "Sir Peter Brian Medawar" |
+------+------------+-------------------------------+

INSERT

Insert statements create an entry into a table and populate the fields appropriately.

INSERT INTO
nobel

VALUES
(’2013’,’Literature’,’Herta Müller’);

+-----+------+--------------+----------------+
| id | yr | subject | winner |
+-----+------+--------------+----------------+
...
873	2013	"Literature"	"Herta Müller"
...
+-----+------+--------------+----------------+

UPDATE

Update statements modify an existing entry in a table.

5.15. Lesson 14: Databases 81

OSU DevOps BootCamp Documentation, Release 0.0.1

UPDATE
nobel

SET
winner=’Andrew Ryan’

WHERE
subject=’Peace’ AND yr=’1951’;

+-----+------+---------+----------------+
| id | yr | subject | winner |
+-----+------+---------+----------------+
...
120	1951	"Peace"	"Andrew Ryan"
...
+-----+------+---------+----------------+

DELETE

Delete statements... You can guess what a delete statement does I bet.

DELETE FROM
nobel

WHERE
yr = 1989 AND subject = ’peace’;

TODO: Crafting Queries!

Craft a query to get the following data out of our Nobel table:

• Who won the prize for Medicine in 1952?

• Who won the 1903 Nobel in Physics?

• Which prize(s) were awarded to Linus Pauling?

• How many people have won more than once? (Difficult)

Don’t worry about getting it exactly right! Craft pseudo-SQL!

Answers

SELECT winner FROM nobel
WHERE yr=1952 AND subject=’medicine’; #(Selman A. Wksman)

SELECT * FROM nobel
WHERE yr=1903 AND subject=’physics’; #(3)

SELECT * FROM nobel
WHERE winner=’Linus Pauling’; #(2)

SELECT COUNT(*) FROM nobel
AS n0 INNER JOIN nobel AS n1 on n0.winner=n1.winner
AND (n0.yr!=n1.yr or n0.subject!=n1.subject); #(16)

82 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

TODO: Using a Real Database

Now that we have belabored the theory of databases and SQL, lets actually start doing work with databases.

Throughout this exercise we will load it up with some data (nobel.sql.gz) and learn to interact with it via the
command line interface.

Importing Data

Create a table for Nobel prizes
$ mysqladmin -u root create nobel
Get the database from the osl server
$ wget http://osl.io/nobel -O nobel.sql.gz
Gunzip the file and import it into the nobel db
$ gunzip nobel.sql.gz
$ mysql nobel < nobel.sql
OR do it in one step!
$ zcat nobel.sql.gz | mysql nobel
Open up mysql shell to execute queries
$ mysql nobel

List all the tables
SHOW TABLES;
Print the layout of the database to the screen
DESCRIBE nobel;

Ways to Use a Database

Now that you have a working database you have a few options for how you want to use it.

• Raw SQL Queries

• Native Queries

• ORMs

Raw Queries

We’ve already done this in the previous exercise. You use your choice of program to interact with the database exclu-
sively via SQL and run the queries you want. This is rarely the way to go and isn’t very useful for most applications.
The SQL language is only good for doing database stuff.

mysql> SELECT subject, yr, winner FROM nobel
WHERE yr=1960;

+------+------------+-----------------------------+
| yr | subject | winner |
+------+------------+-----------------------------+
1960	Chemistry	Willard F. Libby
1960	Literature	Saint-John Perse
...
+------+------------+-----------------------------+

5.15. Lesson 14: Databases 83

OSU DevOps BootCamp Documentation, Release 0.0.1

Native Queries

See nobel.py

#!/usr/bin/python
import MySQLdb
import os

db = MySQLdb.connect(
os.environ[’MYSQL_PORT_3306_TCP_ADDR’],
’root’,
os.environ[’MYSQL_ENV_MYSQL_ROOT_PASSWORD’],
"nobel"

)

cursor = db.cursor()
cursor.execute("SELECT subject, yr, winner FROM nobel WHERE yr = 1960")
data = cursor.fetchall()

for winner in data:
print "%s winner in %s: %s " % (winner[0], winner[1], winner[2])

db.close()

Object Relational Mappers

• Maps an Object in an application to a database table or relationship.

• Talks SQL to the database, your favorite language to you.

• Lets you point to different databases with the same syntax.

• Intelligently manages transactions to the database.

SELECT * FROM nobel WHERE yr = 1960
for subject, yr, winner in session.query(Nobel).filter_by(yr=1960):

print "%s winner in %s: %s " % (subject, yr, winner)

Further Reading

CS 340 The CS 340 course at OSU (titled “Databases”) is a great introduction to this topic. If you have the option to
take it you should!

Lesson 15: Dev Processes & Tools

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

84 Chapter 5. Donate

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/development-processes-tools.html
http://slides.osuosl.org/devopsbootcamp/development-processes-tools.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

Code Analysis

Code analysis tools are some of the most important tools in a developer’s arsenal when it comes to finding and fixing
bugs. Code analysis tools come in two flavors:

Debugging Tools

Debuggers are interactive dynamic analysis tools that are used to inspect your code as it runs.

• Print (broken) variables.

• Read and reports error messages.

• Highlight (incorrect) syntax.

CLI Debugging Tools

C/C++ Tools

• GDB

• Valgrind

Python Tools

• PDB

NodeJS Tools

• node debug

• Node Inspector

5.16. Lesson 15: Dev Processes & Tools 85

OSU DevOps BootCamp Documentation, Release 0.0.1

Web Consoles

• Ctrl+Shift+K (Command+option+k) in Firefox

• Ctrl+Shift+I (Cmd+opt+I) in Chrome

Linters

Linters inspect your code and flags suspicious usage. This can be to enforce a style guide or to flag code which will
probably not compile or break the program when it is running.

Examples:

• flake8 (Python)

• rubocop (Ruby)

• splint (C)

• jshint (NodeJS)

src/times.js: line 407, col 20, Expected ’{’ and instead saw ’return’.
src/times.js: line 415, col 49, Missing semicolon.
src/times.js: line 407, col 58, ’error’ is not defined.

Code Coverage

Name Stmts Miss Cover Missing

my_program.py 20 4 80% 33-35, 39
my_other_module.py 56 6 89% 17-23

TOTAL 76 10 87%

86 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Integrated Development Environments (IDE)

IDEs are programs used to help developers get their job done by integrating many essential tools into one ecosystem.

Examples:

• Netbeans (Java)

• Visual Studio (.NET)

• PyCharm (Python)

• Eclipse (Many)

• Atom (Many)

Style Guides

Example: Real-World Style Guides

The Linux kernel style guidelines are actually fun to read:

“First off, I’d suggest printing out a copy of the GNU coding standards, and NOT read it. Burn them, it’s
a great symbolic gesture.”

—Linux Kernel Coding Style

NASA’s Jet Propulsion Laboratory style guidelines are very short and are concerned with automated tooling to do code
analysis:

“All loops shall have a statically determinable upper-bound on the maximum number of loop iterations.”

—JPL Coding Standard

Dependency Isolation

Dependency isolation is the process of – wait for it – isolating the dependencies of a project. This is a surprisingly
hard problem and many consider it largely unsolved.

5.16. Lesson 15: Dev Processes & Tools 87

https://www.reddit.com/r/Minecraft/comments/3pnwgn/the_new_debug_screen/
https://xkcd.com/1513/
https://tinylab.gitbooks.io/linux-doc/content/en/CodingStyle.html
https://lars-lab.jpl.nasa.gov/JPL_Coding_Standard_C.pdf

OSU DevOps BootCamp Documentation, Release 0.0.1

TODO: Python Virtualenvs

Setup and enter the virtual environment.

$ virtualenv <virtualenv name>
New python executable in /path/to/<venv name>/bin/python
Installing setuptools, pip, wheel...
done.
$ source <venv name>/bin/activate

Install a package. This installs it in the current working directory and so does not ask for root permissions.

(<venv name>) $ pip install flask
[...]

To list all packages in the venv:

(<venv name>) $ pip freeze
click==6.7
Flask==1.0.2
itsdangerous==0.24
Jinja2==2.10
MarkupSafe==1.0
Werkzeug==0.14.1

Deactivate (leave) the venv.

(<venv name>) $ deactivate
$

Other Examples

Node.js: Creates a node_modules directory and tracks dependencies in package.json.

Go: Dependencies are tracked via git repositories and using the go get command.

Rust: Dependencies and versions are specified in Cargo.toml. All compiled code (and dependencies) are stored
in a target directory.

Development Servers

A Carbon Copy of the Production Environment(s)

Development servers are used to test that your code works in a real environment, with a real server, and real data. You
shouldn’t throw your code up on a production website to see if it works, so a development server is as close to the real
thing as you can get.

Further Reading

• The Community Ruby Style Guide is a good resource for anybody learning Ruby. It’s the style guide that
Rubocop enforces.

• The Official Python Style Guide (PEP8) is a well respected style guide for Python and is commonly accepted as
the python style guide.

88 Chapter 5. Donate

https://github.com/bbatsov/ruby-style-guide#prelude
https://github.com/bbatsov/rubocop
https://www.python.org/dev/peps/pep-0008/

OSU DevOps BootCamp Documentation, Release 0.0.1

Lesson 16: DNS

Homepage Content Slides Video

Warning: This lesson is under construction. Use it for learning purposes at your own peril.
If you have any feedback, please fill out our General Feedback Survey.

Problems DNS Solves

Obligatory History Lesson

HOSTS.TXT circa 1977:

MIT 1
Yale 2
Harvard 3
ATT 4
...

HOSTS.TXT a few years later:

5.17. Lesson 16: DNS 89

http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/dns.html
http://slides.osuosl.org/devopsbootcamp/dns.html
https://goo.gl/forms/RyVZkJnownLKu8VI3
https://xkcd.com/1361/

OSU DevOps BootCamp Documentation, Release 0.0.1

...
joeBillson 14895
susan-gill 15832
...

How DNS Works

1. Computer A wants to fetch data from devopsbootcamp.osuosl.org. (notice the . at the end of the
address).

2. Computer A checks the local cache.

3. If the address isn’t in the cache, A contacts the DNS root server. (We’re actually skipping a few layers of
cache. Read up for more info on that.)

4. One of the root nodes tells A to check the org node.

5. The org node is contacted and tells A to check the osuosl node.

6. The osuosl node tells it to check the devopsbootcamp node.

A DNS Request

DNS Records

Acronym Name
A, AAAA IP Addresses
MX SMTP Mail Exchangers
NS Name Servers
SOA DNS Zone Authority
PTR Pointers for Reverse DNS Lookups
CNAME Domain Name Aliases

A Records

The A record is used to map an IP address to a domain name. This is as close to a ‘regular’ record as you
can get.

90 Chapter 5. Donate

https://en.wikipedia.org/wiki/File:An_example_of_theoretical_DNS_recursion.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

osuosl.org. 300 IN A 140.211.15.183

MX Records

The MX record is for tracking mail servers.

osuosl.org. 3600 IN MX 5 smtp3.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp4.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp1.osuosl.org.
osuosl.org. 3600 IN MX 5 smtp2.osuosl.org.

NS Records

Servers with a NS record are allowed to speak with authority on a domain and DNS requests.

osuosl.org. 86258 IN NS ns1.auth.osuosl.org.
osuosl.org. 86258 IN NS ns2.auth.osuosl.org.
osuosl.org. 86258 IN NS ns3.auth.osuosl.org.

SOA (Authority) Records

SOA is the record for proving authority over a site or zone.

osuosl.org. 86400 IN SOA ns1.auth.osuosl.org. ...

CNAME Records

CNAME is an record for aliasing old names to redirect to new names.

bar.example.com. 86400 IN CNAME foo.example.com

NXDOMAIN Records

Tells you there is no answer to a query:

Host something.invalid.osuosl.org not found: 3(NXDOMAIN)

Some ISPs and others never serve NXDOMAINS, instead they point you at themselves.

The Root

$ dig ns .
;; ANSWER SECTION:
. 512297 IN NS i.root-servers.net.
. 512297 IN NS e.root-servers.net.
. 512297 IN NS d.root-servers.net.
. 512297 IN NS j.root-servers.net.
. 512297 IN NS b.root-servers.net.
. 512297 IN NS a.root-servers.net.
. 512297 IN NS f.root-servers.net.
. 512297 IN NS h.root-servers.net.

5.17. Lesson 16: DNS 91

OSU DevOps BootCamp Documentation, Release 0.0.1

. 512297 IN NS g.root-servers.net.

. 512297 IN NS c.root-servers.net.

. 512297 IN NS m.root-servers.net.

. 512297 IN NS k.root-servers.net.

. 512297 IN NS l.root-servers.net.

The Thirteen

Tool: dig

dig is a command-line tool for performing DNS lookups.

Syntax:

dig @server name type

Examples:

dig @ns1.osuosl.org osuosl.org A

Example: Recursive Request

First we query a NS record for .:

$ dig ns .
;; QUESTION SECTION:
;. IN NS

92 Chapter 5. Donate

http://stats.dns.icann.org/hedgehog/

OSU DevOps BootCamp Documentation, Release 0.0.1

;; ANSWER SECTION:
. 518400 IN NS i.root-servers.net.
. 518400 IN NS a.root-servers.net.
. 518400 IN NS l.root-servers.net.
. 518400 IN NS f.root-servers.net.
. 518400 IN NS b.root-servers.net.

etc...

Next we query NS for org.:

$ dig ns com. @a.root-servers.net
;; QUESTION SECTION:
;org. IN NS

;; AUTHORITY SECTION:
org. 172800 IN NS a0.org.afilias-nst.info.
org. 172800 IN NS a2.org.afilias-nst.info.

etc...

;; ADDITIONAL SECTION:
a0.org.afilias-nst.info. 172800 IN A 199.19.56.1

etc...

Next we query NS for osuosl.org.:

$ dig ns osuosl.org. @199.19.56.1
;; QUESTION SECTION:
;osuosl.org. IN NS

;; AUTHORITY SECTION:
osuosl.org. 86400 IN NS ns3.auth.osuosl.org.
osuosl.org. 86400 IN NS ns2.auth.osuosl.org.
osuosl.org. 86400 IN NS ns1.auth.osuosl.org.

;; ADDITIONAL SECTION:
ns1.auth.osuosl.org. 86400 IN A 140.211.166.140
ns2.auth.osuosl.org. 86400 IN A 140.211.166.141
ns3.auth.osuosl.org. 86400 IN A 216.165.191.53

Next we query A for osuosl.org.:

$ dig a osuosl.org. @140.211.166.140
;; QUESTION SECTION:
;osuosl.org. IN A

;; ANSWER SECTION:
osuosl.org. 300 IN A 140.211.15.183

;; AUTHORITY SECTION:
osuosl.org. 86400 IN NS ns1.auth.osuosl.org.
osuosl.org. 86400 IN NS ns2.auth.osuosl.org.
osuosl.org. 86400 IN NS ns3.auth.osuosl.org.

;; ADDITIONAL SECTION:
ns1.auth.osuosl.org. 86400 IN A 140.211.166.140
ns2.auth.osuosl.org. 86400 IN A 140.211.166.141

5.17. Lesson 16: DNS 93

OSU DevOps BootCamp Documentation, Release 0.0.1

ns3.auth.osuosl.org. 3600 IN A 216.165.191.53

TODO: Traverse the DNS Tree with dig

Can you traverse the DNS tree to get to these websites? Give it a try!

• github.com

• web.archive.org

• en.wikipedia.org

Further Reading

• Try running dig on some of your favorite websites and see what you find.

• Read the manpage on dig and see what else you can find in the output.

• Try registering your own domain name and run a website using the Github Student Pack resources like Digital
Ocean and DNSimple.

Lesson 17: Configuration Management

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Configuration Management

“Configuration management is the process of standardizing resource configurations and enforcing their
state across IT infrastructure in an automated yet agile manner.”

• Puppet Labs

user { ’audience’:
ensure => present,

}

Short History of CM

In the beginning there were no computers.

Then many years passed and eventually we built the first computer.

Then a few years after that we had more computers than we really had time to manage. Things got out of hand pretty
quick.

94 Chapter 5. Donate

https://education.github.com/pack
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/configuration-management.html
http://slides.osuosl.org/devopsbootcamp/configuration-management.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

Concept: Infrastructure as Code

• Install packages, configure software, start/stop services.

• Ensure/guarantee a specific state of a machine.

• Provide history of changes for a system.

• Repeatable way of rebuilding a system.

• Orchestrate a cluster of services together.

Pull vs Push Models

Pull Model Scales well but difficult to manage.

Push Model Simple to manage and setup but not scalable.

Tools

• Puppet

• Chef

• CFEngine

• Ansible

• Saltstack

5.18. Lesson 17: Configuration Management 95

OSU DevOps BootCamp Documentation, Release 0.0.1

Puppet

• Uses custom CM Language.

• Primary Push Model.

• Widely Adopted.

• Very stable.

• Difficult to get setup.

96 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Chef

• Primarily Push Model.

• Code files are Ruby.

• Widely Adopted.

• Difficult to setup.

CFEngine

• Fast at execution, slow at adaptation.

• Very old.

• Stable.

5.18. Lesson 17: Configuration Management 97

OSU DevOps BootCamp Documentation, Release 0.0.1

Ansible

• Easy to use.

• Easy to setup.

• Does not scale well.

SaltStack

• Easy to use.

• Hard to get started.

Declaration Configuration

packages [nginx, python, vim]
state installed
update true

service nginx
state enabled
alert service myapp_daemon

98 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Chef Example

• Install apache and start the service

• Configuration is called a ‘recipe’

• Written as pure Ruby code

package "apache" do
package_name "httpd"
action :install

end

service "apache" do
action [:enable, :start]

end

Note: Since chef uses Ruby you can do loops and other cool Ruby-isms in your configuration management. This can
be a gift and a curse.

Puppet Example

• Install apache and start the service

• Configuration is called a ‘manifest’

• Puppet DSL based on Ruby

package { "apache":
name => "httpd",
ensure => present,

}

service { "apache":
name => "apache",
ensure => running,
enable => true,
require => Package["apache"],

}

Note: Since Puppet designed its own language you are more limited in what you can express, but this isn’t always a
bad thing. It’s feature rich and can do pretty much anything that Chef can.

Ansible Example

• Install apache and start the service

• Configuration is called a ‘playbook’

• Uses YAML file format for configuration

- hosts: all
tasks:

- name: Install Apache
yum:

name: httpd

5.18. Lesson 17: Configuration Management 99

OSU DevOps BootCamp Documentation, Release 0.0.1

state: present

- name: Start Apache Service
service:

name: httpd
state: running
enabled: yes

Note: Ansible’s language is Yaml, which is basically JSON but easier to read and write. This is similar to Puppet
in it limits the possible functionality, but again: these tools all achieve the same result, they just get there in different
ways.

Further Reading

• Ansible’s Documentation is comprehensive and contains an easy-to-follow “Getting Started” guide.

• Kitchen-CI is a Chef oriented testing system

• Puppet Learning VM is a prebuilt VM for learning Puppet’s fundamental concepts

Lesson 18: Application Isolation

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

100 Chapter 5. Donate

http://docs.ansible.com/ansible/
http://kitchen.ci/
https://puppet.com/download-learning-vm
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/application-isolation.html
http://slides.osuosl.org/devopsbootcamp/application-isolation.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

Application Isolation

Virtual Machines

[vm] # ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.6 110564 3164 ? Ss 2015 11:17 /lib/systemd/systemd --system --deserialize 15
root 2 0.0 0.0 0 0 ? S 2015 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S 2015 3:55 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< 2015 0:00 [kworker/0:0H]
[... 120+ more lines ...]

[host] # ps aux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.1 200328 5208 ? Ss Aug25 0:44 /sbin/init
root 2 0.0 0.0 0 0 ? S Aug25 0:00 [kthreadd]
root 3 0.0 0.0 0 0 ? S Aug25 0:05 [ksoftirqd/0]
root 5 0.0 0.0 0 0 ? S< Aug25 0:00 [kworker/0:0H]
[... 240+ more lines ...]

OS Emulation

Containers

[container] $ ps aux
PID USER TIME COMMAND

5.19. Lesson 18: Application Isolation 101

https://commons.wikimedia.org/wiki/File:Hardware_Virtualization_%28copy%29.svg

OSU DevOps BootCamp Documentation, Release 0.0.1

1 root 0:00 sh
6 root 0:00 ps aux

Container Technologies

Containers vs VMs

Pros

Virtual Machines Containers
Complete process isolation Fast startup
‘Battle Tested’ Little overhead

Cons

Virtual Machines Containers
Slightly more overhead. Security concerns.
Slow startup. No cross-kernel emulation.
Cross-kernel emulation.

102 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

Tools

Virtual Machines Containers
VirtualBox Docker
VMWare Rkt

Virtual Machines

VirtualBox An Open Source VM Manager.

Widely used and supported on Linux, Mac, and Windows.

VMWare A closed source VM Manager.

VMWare is a widely used and tends to have better performance than Virtual Box. While it can emulate Linux it
does not work natively on Linux.

KVM The Kernel-based Virtual Machine.

Linux’s native infrastructure for handling Virtual Machines and emulation. Usually used in a larger emulation
program, not alone.

Containers

Docker The de facto CLI tool for creating and using containers.

Very popular and well integrated into other tools.

RKT A competitor to Docker created by CoreOS. Approaches container management from a different angle which
has it’s advantages and disadvantages.

chroot The oldschool way to use containers. Not a container in the modern sense, but achieves similar process
isolation.

Jails The BSD Unix form of containerization. Offers a level of secure isolation not really possible in Linux.

TODO

Further Reading

Docker

RKT

Lesson 19: Cloud Infrastructure

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

5.20. Lesson 19: Cloud Infrastructure 103

https://docs.docker.com/
https://coreos.com/rkt/docs/latest/
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/cloud-infrastructure.html
http://slides.osuosl.org/devopsbootcamp/cloud-infrastructure.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

What the Cloud Looks Like

[...] a model for enabling ubiquitous, on-demand access to a shared pool of configurable computing
resources.

Advantages over Bare Hardware

Private Clouds

Public Clouds

Cloud + Configuration Management

Advantages

Running your software on a cloud is:

• Ephemeral

• Cost effective

• Low startup cost

Disadvantages

Clouds can be great tools, but they have some disadvantages:

• Central Point of Failure

104 Chapter 5. Donate

OSU DevOps BootCamp Documentation, Release 0.0.1

TODO

Further Reading

AWS provides a lot of services, not all of which are named very well. This article explains what each service does in
plain English.

Lesson 20: Contributing to Open Source

Homepage Content Slides Video

Warning: This lesson is under construction. Learn from it at your own risk. If you have any feedback, please fill
out our General Feedback Survey.

Open Source

• Learn lots of new things, and grow as developers.

• Give back to a community that has given you something.

• You have more to contribute than you may realize!

• Meet amazing people.

• Personal fulfillment.

Community Benefit

Share the Love (and the Code)

Personal Benefit

• ‘Learning the Ropes’ of a substantial code-base

• Working with others

• Getting code reviewed

• Documenting contributions

• Testing your changes

Free?

Free Software: [Free Software] means that the users have the freedom to run, copy, distribute, study, change
and improve the software.

The Four Freedoms:

0. The freedom to run the program as you wish, for any purpose.

1. The freedom to study how the program works, and change it so it does your computing as you wish. Access
to the source code is a precondition for this.

5.21. Lesson 20: Contributing to Open Source 105

https://www.expeditedssl.com/aws-in-plain-english
http://devopsbootcamp.osuosl.org
http://devopsbootcamp.osuosl.org/contributing-to-open-source.html
http://slides.osuosl.org/devopsbootcamp/contributing-to-open-source.html
https://goo.gl/forms/M5aI0MDnQtW6RoHM2

OSU DevOps BootCamp Documentation, Release 0.0.1

2. The freedom to redistribute copies so you can help your neighbor.

3. The freedom to distribute copies of your modified versions to others. By doing this you can give the whole
community a chance to benefit from your changes. Access to the source code is a precondition for this.

Assessing a New Community

Elitism vs Nice-ism

Communication style

Documentation and Guides

Things to Look for

• When are the top pull requests time-stamped? Anything older than 3-4 months might not be ideal.

• Open / recent issues (especially with help wanted labels) are good.

• Many contributors means they’re used to people helping out.

How to Get Involved

Finding a Project

In order of perceived usefulness:

• Openhatch

• 24 pull requests

• BugsAhoy

• Showcased github projects

• Trending github projects

I Can’t Find a Project I Like!

That’s okay.

First Steps

0. Find a project

1. Read Contributing and Getting Started docs

2. Look at list of issues

3. Do a thing!

• Write a test

• Fix a typo

• Deploy and update the installation docs

106 Chapter 5. Donate

http://openhatch.org/search
http://24pullrequests.com/
http://www.joshmatthews.net/bugsahoy/
https://github.com/showcases
https://github.com/trending

OSU DevOps BootCamp Documentation, Release 0.0.1

Know your Licenses

Licenses to use:

• MIT

• Apache 2.0

• AGPL/GPL/LGPL 2/3

Licenses to *not* use:

• Public Domain Dedication

TODO: Find an Open Source Project

Further Reading

Choose A License

About

What is DevOps?

DevOps is a hybrid of skills from both Software Development (Dev) and Computer Operations (Ops) intended to
meet the unique demands of cloud computing. Software Developer and Systems Administrator are no longer mutually
exclusive job titles. Devs need more Ops knowledge to understand how their application will run in the real world.
Admins need more Dev knowledge to design infrastructure that fit an app’s needs efficiently and effectively. To top it
off site reliability engineers and many modern security roles require at least a little background in both development
and operations.

Purpose of DevOps BootCamp

DevOps BootCamp is an OSU Open Source Lab program dedicated to teaching core software development and sys-
tems operation skills. The program is free and open to any interested OSU students, community member, and online
go-getter. DevOps BootCamp provides a comprehensive Open Source education that is outside the scope of regular
Linux Users Group meetings and OSU Coursework.

5.22. About 107

https://choosealicense.com
https://en.wikipedia.org/wiki/Cloud_computing
https://osuosl.org

OSU DevOps BootCamp Documentation, Release 0.0.1

What Students Get

• Mentorship from students and professionals with advanced skills in software development and systems admin-
istration.

• Professional connections in the software industry.

• A welcoming environment to start learning, for those who have always wanted to learn about software develop-
ment and systems administration but were never sure where to start.

• An opportunity to fill in knowledge gaps for self-taught coders or sysadmins.

• The skills to build and deploy Open Source software, or contribute to existing projects

What the Open Source Lab Gets

• The OSL gets a larger pool of candidates to recommend to companies interested in recruiting students.

• The OSL gets to work with a wider variety of students, helping it contribute to the school of EECS.

• The Open Source Community gets more project contributors.

Target Audience

Our goal is to make the DevOps BootCamp program accessible to students and community members from all back-
grounds. Students should:

• Want to learn.

• Be willing to ask questions

• Be open to setting apart time to play with the tools you’ll be learning about in the class.

Policies

Attendance

Attendance is not mandatory but highly suggested to get the most out of DOBC; We will not spend class time reviewing
material for those who skip a lecture and each classes curriculum will build on what you learned the previous session.
All curriculum will be available online before and after class sessions to get caught up.

BootCamp mentors will be available at scheduled times outside of regular classes to help answer any questions about
the training program’s content. If you attend a lesson and don’t understand something then you are encouraged to ask
that question during the meeting since others are likely have the same question.

Laptops

As the course progresses, you will need a laptop. We hope and recommend that you decide to set up your laptop to
dual-boot to Linux as the course progresses, but it is not required. If you don’t own a laptop and are an OSU student
you can check out a laptop from the OSU Library for at least 24 hours at a time.

As long as your laptop is new enough to boot from USB and connect to a wireless network the exact specifications do
not matter. You will be provided with a remote virtual machine with which to do all class projects.

If you are not an OSU student and do not have access to a working laptop, contact the DevOps BootCamp (email
devopsbootcamp) organizers and they will see whether one can be loaned out to you.

108 Chapter 5. Donate

mailto:devopsbootcamp@osuosl.org
mailto:devopsbootcamp@osuosl.org

OSU DevOps BootCamp Documentation, Release 0.0.1

Get Involved

Mailing list

Join the mailing list for updates.

Slack

Feel free to also join us on Slack. If you sign up using your OSU email address, you’ll automatically get added without
any invitation. If you don’t have an email address from from the allowed domains, please let us know and we’ll get
you invited!

IRC

Join us on irc.freenode.net in #devopsbootcamp (students will be setting up an IRC network for the
program early in the program).

Website & Curriculum

If you’d like to help edit this site, email devopsbootcamp or ping anyone in #devopsbootcamp on Freenode with
your GitHub username to get access to the web site repo. You’ll also want to learn the ReStructured Text markup
language to edit the site, if you don’t already know it.

Setting up SSH

Secure Shell (SSH) provides a secure channel to access a Linux machine remotely via command line.

Windows

Windows doesn’t come with an ssh client natively, however you can download and install PuTTY to give you a nice
SSH client.

Linux and Mac

If you’re already running Linux or have a Mac laptop, you already have an ssh installed. For the Mac, simply open up
the Terminal.app. For Linux, you can use something like Gnome Terminal, Terminator or xterm to name a few.

Setting up Docker

Docker is a software technology which provides the use of containers which is kind of a light form of virtual machines.
It’s used quite a bit in DevOps to setup development environments along with a variety of other uses. In addition to
Docker, we’re going to be using Docker Compose which is used for running multi-container environment. For DevOps
Bootcamp, we’re going to be using Docker in a variety of ways from acting as a simple Linux machine, to hosting
applications.

5.23. Setting up SSH 109

http://lists.osuosl.org/mailman/listinfo/devops-bootcamp
https://devopsbootcamp.slack.com
https://join.slack.com/t/devopsbootcamp/signup
mailto:devopsbootcamp@osuosl.org
http://sphinx-doc.org/rest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
http://docker.com/
https://docs.docker.com/compose/

OSU DevOps BootCamp Documentation, Release 0.0.1

Installing Docker

Docker can be installed on Windows, Mac and a variety of Linux operating systems (Ubuntu, Debian, CentOS, Fe-
dora). Please be sure you read the installation instructions closely to ensure your system supports running Docker and
has the needed BIOS features enabled. If you have any trouble getting it installed, feel free to ask in our Slack channel.

Installing Docker Compose

Docker Compose can be installed on Windows, Mac and a variety of Linux operating systems. Please read the
installation instructions for your platform carefully.

Running the DOBC image

First you need you need to clone the Bootcamp-Exercises repository:

$ git clone https://github.com/DevOpsBootcamp/Bootcamp-Exercises.git

Once you have Docker and Docker Compose installed and running and also have the Bootcamp-Exercises repository
cloned, you can spin up a Docker image we’ve created for DOBC by running the following from the root of the
repository directory:

$ cd Bootcamp-Exercises
$ docker-compose up -d
$ docker-compose run -p 8080:8080 dobc bash

You can log out by typing exit and then enter which will stop the container.

Stopping the container

To stop the container, run the following:

$ docker-compose kill
$ docker-compose rm --all

Schedule

The DevOps BootCamp content is available for free but meet-space guided lectures are offered throughout the year.
Check the schedule below for our in-person lectures; each lecture covers a different part of the curriculum covering
the entire course during the OSU academic school year.

Warning: If you are working ahead be aware that the schedule and slides may be subject to change. Check back
regularly.

Fall

Lessons Covered Date/Time Location Description
0 - 7 Oct 27, 2018 9:30am-3:30pm OSU KEC 1001 DevOps BootCamp Fall Kickoff

110 Chapter 5. Donate

https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/
https://docs.docker.com/engine/installation/linux/docker-ce/debian/
https://docs.docker.com/engine/installation/linux/docker-ce/centos/
https://docs.docker.com/engine/installation/linux/docker-ce/fedora/
https://docs.docker.com/engine/installation/linux/docker-ce/fedora/
https://docs.docker.com/compose/install/#install-compose
https://github.com/DevOpsBootcamp/Bootcamp-Exercises
https://github.com/DevOpsBootcamp/Bootcamp-Exercises
https://goo.gl/maps/KZiKaCoeuru

OSU DevOps BootCamp Documentation, Release 0.0.1

Open Office Labs

Each lab has two time slots (please choose one) to help assist with students being able to attend. All labs will in Milne
224.

Description Slot 1 Slot 2
Lab #1 Oct 31, 2018 10am-12pm Nov 1, 2018 2-4pm
Lab #2 Nov 14, 2018 10am-12pm Nov 15, 2018 2-4pm
Lab #3 Nov 28, 2018 10am-12pm Nov 29, 2018 2-4pm

Running DOBC

If you’re reading this it means you’re interested in running DOBC yourself. It may have been passed on to you, or you
may just like the curriculum and want to use it to start your own DOBC. Either way, thank you for reading this!

This page is a growing checklist, warning, notes, and fables from those teaching and contributing to DOBC. If you
read this, heed it’s warnings and take it’s lessons to heart you will no doubt be on your way to success.

Before You Begin

Meet-Space Lectures

Practice. Just like any public speaking engagement, you should review what you’re going to do and practice it in real
time. This means you should say the things you’re going to say and even do the activities the students will do.

Always have a buddy. Teaching alone can be done, but if at all possible try to have a teaching ‘buddy’. This person
is at least about as expert on the topics you’re covering as you are. Your buddy can field questions, help with
TODOs, and can even take over the lesson if you need them to (you might need to go to the bathroom, who
knows).

Always be taking notes. As a lecturer you won’t always teach perfectly. You won’t get it perfect the first, second,
third, or even last time – but you should always strive for perfection.

Take notes on what could have gone better, questions that were asked, and confusions students had. The DOBC
curriculum can be very dense and sometimes it skims over important stuff. During each lesson be sure to
improve the curriculum based on your notes. Whoever teaches it next time will thank you.

Online Engagement

Adding to Lessons

Attribute Images We do our best to attribute images by linking them to the website we got them from. If you add
images to the website try to do the same.

5.26. Running DOBC 111

https://goo.gl/maps/rzrpJKzV82U2
https://goo.gl/maps/rzrpJKzV82U2

	Ready to Learn DevOps? Lesson 0: Start Here
	DevOps BootCamp: Fall 2018
	DevOps Open Office Labs
	Schedule
	Fall
	Open Office Labs

	Donate
	Lesson 0: Start Here
	Lesson 1: First Steps
	Lesson 2: Operating Systems
	Lesson 3: Docs & Communication
	Lesson 4: Shell Navigation
	Lesson 5: Users, Groups, Permissions
	Lesson 6: Files
	Lesson 7: Packages, Software, Libraries
	Lesson 8: Version Control
	Lesson 9: Programming
	Lesson 10: Frameworks
	Lesson 11: Testing
	Lesson 12: Continuous Integration
	Lesson 13: Security
	Lesson 14: Databases
	Lesson 15: Dev Processes & Tools
	Lesson 16: DNS
	Lesson 17: Configuration Management
	Lesson 18: Application Isolation
	Lesson 19: Cloud Infrastructure
	Lesson 20: Contributing to Open Source
	About
	Setting up SSH
	Setting up Docker
	Schedule
	Running DOBC

